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Introduction

Walleye Sander vitreus and yellow perch Perca flavescens are the dominant predator and 
prey species in Oneida Lake and support a valuable recreational fishery. Abundances of both 
species have fluctuated greatly over time due to changes in weather and alterations in food 
web dynamics resulting from species irruptions and invasions of exotic species. At least one 
major ecological perturbation has impacted the Oneida Lake ecosystem in each decade since 
scientific monitoring of the lake began in the late 1950s, and some changes have occurred 
simultaneously. Although the population dynamics of walleyes and yellow perch in Oneida 
Lake have been well documented (reviews in Forney 1980; Mills and Forney 1988; Rudstam 
et al. Chapter 15), recent coincident invasions by zebra mussels Dreissena polymorpha that 
affect lower trophic levels (Idrisi et al. 2001; Mayer et al. 2000), and irruptions of double-
crested cormorants Phalacrocorax auritus that prey on upper trophic levels (Rudstam et al. 
2004) have complicated interpretation of factors influencing percid population dynamics.

A modeling approach often is useful for disentangling effects of multiple factors on fish 
population dynamics. Whereas statistical analyses of fish population dynamics may be com-
plicated by overlapping effects of multiple factors on individual year classes, a simulation 
model analysis can cleanly compare differences in factor impacts on fish populations over 
multiple generations. An individual-based modeling (IBM) approach is particularly appropri-
ate for studying percid population dynamics as many of the trophic interactions and fisheries 
regulations are size based. Rose et al. (1999) developed an IBM to simulate density-depen-
dent mechanisms of walleyes and yellow perch in Oneida Lake. The model was calibrated to 
observed abundances, sizes, growth rates, and survival rates of walleye and yellow perch, and 
reproduced many of the density dependent relationships observed in the empirical database. 
Rutherford et al. (1999) used the IBM to simulate effects of a zebra mussel-induced energy 
shunt on walleye and yellow perch dynamics in Oneida Lake. Rose et al. (1996) used the 
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model to illustrate multispecies modeling of fish population dynamics, and Sable and Rose 
(2008, Chapter 21) and Rose and Sable (2009) used the IBM to evaluate whether age and 
stage structured matrix projection models, which are easier to develop and analyze than IBMs, 
could simulate the complicated predator–prey dynamics observed between yellow perch and 
walleyes. The IBM was also adapted by Jaworska et al. (1997) to simulate contaminant ef-
fects on yellow perch, and modified by Brenton (1998) to simulate potential effects of ruffe 
Gymnocephalus cernuus invasion on walleyes and yellow perch in Lake Superior.

Despite the complexity of trophic interactions and high recruitment variability reported 
for walleye and yellow perch, management of the Oneida Lake fishery has remained surpris-
ingly simple (Forney 1980). Before the 1970s, walleye and yellow perch fisheries operated 
without size or creel limits. By 1970, walleye regulations changed to a 302 mm (12 in) total 
length (TL) size limit, and a bag limit of five fish per day. After several studies quantified the 
influence of walleye stocking and yellow perch dynamics on walleye populations and yield, 
the New York State Department of Environmental Conservation (NYSDEC) adopted a rela-
tively simple management plan (we call Forney’s algorithm) that adjusts walleye size limits 
depending upon the size of the adult walleye population and the expected incoming walleye 
recruitment (Forney 1980). Minimum size limits of walleye are set to 302 mm TL if the adult 
walleye population is relatively large, and incoming recruitment is average or high; minimum 
size limits are raised to 487 mm TL if numbers of adult walleyes and recruits decline to low 
levels.

In this chapter, we use the IBM to understand the equilibrium and historical responses 
of yellow perch and walleye populations to each of the known ecological periods that have 
occurred in Oneida Lake since the 1950s. Some of these simulations are an update of those 
previously reported in Rose et al. (1999) and Rutherford et al. (1999), and several of the 
simulations (e.g., cormorant effects) are new. We compared simulations of the equilibrium 
responses by walleyes and yellow perch to period conditions with responses predicted when 
the periods occurred for a decade, each in a historical sequence. The question we wanted to 
address was whether the yellow perch and walleye population dynamics predicted for each 
period in the historical sequence were near the equilibrium responses expected for that pe-
riod, or were the dynamics still in transition. We also compared a constant age of first harvest 
with a dynamic setting of age of first harvest designed to mimic Forney’s algorithm to assess 
the ability of simple but dynamic management regulations to maintain percid stock size and 
harvest in the presence of changing ecosystem conditions. We hypothesized that Forney’s 
(1980) variable size (age in our version) management algorithm would maintain higher and 
less variable abundances and yields of both walleyes and yellow perch compared to a constant 
size (age) limit regulation.

Oneida Lake

Oneida Lake is a large (207 km2), productive lake in central New York with a mean depth 
of 6.8 m and a maximum depth of 16.8 m and is described in detail in Schneider et al. (Chap-
ter 4) and De Stasio et al. (Chapter 13). Prevailing westerly winds and wind-driven currents 
generally maintain well-mixed, isothermal conditions throughout the summer. The general 
lack of vertical stratification and relatively small littoral zone implies that the lake could be 
approximated in the IBM simulations by a single, well-mixed volume.
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We configured the IBM based on studies of the population dynamics and trophic inter-
actions of Oneida Lake walleyes and yellow perch conducted from 1958 to 1991, before 
the zebra mussel invasion (Forney 1980; Mills and Forney 1988). There were three distinct 
ecological periods during this time: mayflies, baseline, and forage fish (Figure 1). The mayfly 
period (1958–1969) was characterized by high densities of mayflies Hexagenia limbata, and 
strong, stable year classes of walleye and yellow perch. The baseline period (1970–1978) was 
characterized by an absence of mayflies, generally low abundances of white perch Morone 
americana (forage fish), higher rates of walleye cannibalism, and lower and more variable 
recruitments of yellow perch and walleyes. Yellow perch were the dominant prey of walleyes, 
and white perch and young walleyes were of secondary importance as walleye forage (Forney 
1974; Prout et al. 1990). The forage fish period (1979–1991) was characterized by strong year 
classes of young-of-year (YOY) white perch or gizzard shad Dorosoma cepedianum, higher 
recruitments of walleyes, and lower recruitments of yellow perch. Adult abundances of both 
species were highest during the mayflies period, and lower and more variable during the base-
line and forage fish periods (Rose et al. 1999).
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Figure 1. (Top) Observed trends in adult yellow perch abundance (solid line) and adult walleye adult abun-
dance (dashed line) over time in Oneida Lake, New York. The approximate time periods are shown that 
correspond to the mayfly (MF), baseline (BL), forage fish (FF), and zebra mussel plus cormorant (ZM/Birds) 
periods. (Bottom) Model simulated adult yellow perch abundance (solid line) and adult walleye abundance 
(dashed line) for the historical time series simulation. The approximate time periods are shown that cor-
respond to the mayfly (yr 26–35), baseline (yr 36–45), forage fish (yr 46–55), zebra mussel (yr 56–65), and 
zebra mussel plus cormorant (yr 66–75) periods.
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Since the early 1990s, two new periods have been documented in Oneida Lake related to 
the invasion of zebra mussels and an increase in cormorants (Figure 1). Zebra mussels were 
found in Oneida Lake in 1990 and were abundant by 1992 (Mayer et al. Chapter 9). The zebra 
mussel period (starting in 1992) involved major shifts in the water clarity and food web of 
Oneida Lake that negatively affected yellow perch and walleye abundances and recruitments 
(Rutherford et al. 1999; Mayer et al. 2000; Irwin et al. 2009). Zebra mussel effects continued 
in the next period that also saw a dramatic increase in cormorants. Cormorants were first 
observed nesting in Oneida Lake in 1984, and the population grew slowly and did not appear 
to have significant effects until the 1990s (Rudstam et al. 2004). Surveys conducted in 1997 
documented 300 nesting pairs of cormorants in Oneida Lake, with 1,000–2,000 additional 
migrants using the lake from August through October (VanDeValk et al. 2002). This zebra 
mussels plus cormorants period (from 1992 to the present) was characterized by the continu-
ing decline in the abundances and recruitments of walleyes and yellow perch.

Model Description

The IBM simulates the dynamics of yellow perch and walleye populations in Oneida Lake 
and is described in detail in Rose et al. (1999). The model begins with spawning of individual fe-
males of each species and simulates growth and survival of each female’s progeny as they develop 
through successive life stages (egg, yolk sac larva, feeding larva, YOY juvenile, yearling, and 
adults age-2 and older). Yellow perch year classes are followed in the model until age 10 and wall-
eyes until age 12. Predator–prey relationships represented in the model are depicted in Table 1.

The IBM represents daily dynamics of walleyes and yellow perch in a single, well-mixed 
compartment 260 m × 260 m × 6.8 m deep, scaled to represent Oneida Lake. The environ-
ment in the box consists of daily water temperature and the daily dynamics of a variety of prey 
types. Each year is 365 d long beginning on January 1.

Spawning and Eggs and Yolk sac Larvae

Adult walleyes and yellow perch are evaluated for spawning on day 100 (April 10) of each 
year. A female adult is mature if a generated random number is less than the fraction mature for 
her length. Fraction mature and fecundity increase with female size for both species. Each fe-
male is assigned a temperature of spawning from species-specific probability distributions; a fe-
male spawns on the first day that simulated temperature exceeds the temperature of spawning.

Each female’s spawn of eggs is followed as a cohort. Day of hatching and day of first 
feeding are temperature-dependent and determined by accumulating daily fractional develop-
ment rates until the cumulative value exceeds one. Numbers of eggs or yolk sac larvae in each 
cohort are reduced daily by specified daily mortality rates.

Feeding Life Stages

All first-feeding larvae are assigned identical initial lengths: 6.6 mm for yellow perch and 
9 mm for walleyes. Development from larvae to YOY juveniles (metamorphosis) occurs at 
20 mm for both species. On April 10 each year, surviving individuals of each year-class are 
promoted to the next age.
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Daily growth in weight is represented by the standard Wisconsin-style bioenergetics 
equation (Hanson et al. 1997; Rose et al. 1999). We use parameter values from previously 
published bioenergetics models (for < age 1 YP YP, Post 1990; for ≥ age 1 YP, Kitchell et al. 
1977; for walleyes <43 mm TL: Madon and Culver 1993; for walleyes ≥43 mm, Minton and 
McLean (1982), Fox (1991)). Maximum consumption and metabolism depend on an indi-
vidual’s weight and water temperature. Egestion, excretion, and specific dynamic action are 
computed as a fraction of realized consumption. An individual’s weight is updated based on 
growth and then its new length is determined using length-weight relationships.

Realized consumption by individuals is based on a Type II multispecies functional re-
sponse relationship and is dependent on prey densities, vulnerability of each prey type to the 
individual predator, and half-saturation constants (K) governing the rate of predator satura-
tion. Vulnerability-adjusted prey densities are obtained by either multiplying densities by a 
factor less than one (for zooplankton and benthos), or by determining the vulnerability of each 
individual fish prey item (forage fish, yellow perch, and walleyes) based on its length relative 
to the predator length. Values of K are specified for size intervals of the predator and each prey 
type, and were determined by calibration.

A total of seven prey types are represented that encompass the dominant prey eaten by 
yellow perch and walleyes from first feeding through the adult stage. Zooplankton are repre-
sented by the sum of small and medium sized Daphnia spp., benthos by Chironomidae, and 
forage fish by YOY white perch and a mix of smaller-sized species. The remaining four prey 
types, YOY and yearling life stages of yellow perch and walleyes, are simulated as individu-
als in the model.

Each day, the densities of zooplankton, benthos, and forage fish are updated based on 
numbers consumed and a specified production rate using a modified logistic population 
growth function. Production rates of zooplankton, benthos, and forage fish are based upon 

Table 1. Predator prey interactions defined in the percid individual-based model by non-zero vulnerability 
factors for respective life stages. “YOY” (young-of-year or age-0) are juveniles >20 mm TL. “Yrlg” (yearling) 
are age-1 individuals. The symbols “X” indicates allowed predator-prey interactions.

    Yellow perch   Walleye

Prey/Predator  Larvae     YOY, Yrlg Adult Larvae YOY Yrlg Adult

Zooplankton  X     X  X X X2  
Benthos        X1  X X X X X
Forage fish       X X X
       
Larval perch      X X X 
Larval walleye      X X X 
YOY perch     X  X X X
YOY walleye       X X X
Yrlg perch        X X
Yrlg walleye        X X

1 Yellow perch >30 mm
2 Walleye < 100 mm
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unpublished data for Oneida Lake and a review of benthic production and turnover rates 
(Rose et al. 1999). Equilibrium densities are the maximum densities of each prey type allowed 
in model simulations (i.e., carrying capacity in the logistic equation). Equilibrium densities 
of zooplankton are assumed time dependent based on the sum of small and medium Daphnia 
(<1.4 mm) measured weekly in Oneida Lake. Equilibrium density of benthos is assumed to 
be a constant, and forage fish equilibrium density is assumed to be 10 times higher between 
July and October than overwinter.

Larval mortality is specified as fixed rates for each species. Mortality rates of juvenile 
and yearling yellow perch and walleyes are computed from the consumption rates of walleye 
and yellow perch. Adult (age-2 and older) natural and fishing mortality of yellow perch, and 
natural mortality of walleyes, are assumed constant rates. Walleye fishing mortality varied 
by month and for each month was decreased by increasing numbers of YOY yellow perch, 
walleyes, and forage fish because walleyes are less apt to be caught when their natural forage 
is available (Lloyd 1996; VanDeValk et al. 2005, Chapter 17). Recent analysis indicates rates 
of fishing and natural mortality of walleye adults, and fishing mortality for yellow perch are 
similar to early estimates (Forney 1980; VanDeValk et al. 2002), while natural mortality of 
yellow perch adults has increased due to cormorant consumption (VanDeValk et al. 2002).

Numerics

The super-individual approach is used for yellow perch and walleye separately in the 
IBM (Rose et al. 1999). Super-individuals allow for a fixed number of model individuals to 
be used to simulate variation in population size. Each spawning female’s egg is followed as 
a separate cohort until first feeding is reached. All first feeding larvae are accumulated over 
females to obtain the total number of first feeders on each day. Each year, 100 model indi-
viduals are allocated to days roughly in proportion to the number of first feeders, who are 
then added to the population on the appropriate day. The initial value of each added model 
individual is set to the number added on that day divided by the total number of first feeders 
on that day (e.g., 100 first feeders represented by 10 model individuals each would have an 
initial worth of 10). Upon reaching age-11 for perch and age-13 for walleyes, these model 
individuals are removed and replaced by the 100 new model individuals of the new year-class, 
so that there are always 1000 model individuals representing yellow perch and 1200 model 
individuals representing walleyes in the simulation. The sum of values over these individuals 
is the population value. All predator–prey interactions account for the values of individuals, 
and mortality from all sources reduces the value of individuals over time. To avoid walleyes 
eating more yellow perch than are available in a day, values of yellow perch and walleyes are 
updated for predation after each individual is evaluated.

Model Calibration and Corroboration

We previously calibrated the IBM under baseline conditions using yellow perch and wall-
eye abundances, survival rates, growth rates, and diets from the Oneida Lake database. Model 
corroboration consisted of using the calibrated model to simulate a 30 year time series (after 
an initial 25 year-period to eliminate effects of initial conditions) consisting of 10 years of 
mayflies, 10 years of baseline, and 10 years of forage fish conditions. Model predictions of 
yellow perch and walleye abundances, mean lengths, and survival rates from the 30 years 
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compared favorably to data synthesized from the mayflies, baseline, and forage fish time pe-
riods in Oneida Lake (see Figure 3 in Rose et al. 1999).

Model Simulations

Representation of Periods

We simulated each of the five conditions (mayfly, baseline, forage fish, zebra mussels, 
cormorants) by altering the parameter values of the baseline model (Table 2). The mayfly and 
forage fish conditions were simulated the same way as in Rose et al. (1999). The mayfly effect 
involved increasing densities of benthos prey, reducing predation mortality on yellow perch, 
and reducing harvest of walleye during the typical mayfly emergence time period of June 5 to 
July 19. The forage fish effect simply involved increasing the densities of the forage fish prey 
group, which varied seasonally during each year.

Zebra mussels were simulated as increased benthic production and effects of improved 
water clarity (Table 2). Increased shunting of energy to benthos was simulated by increasing 
the baseline benthic densities and the benthic production rate. Improved water clarity was 
simulated by adjusting the half saturation coefficients (K-values) of the multispecies func-
tional response relationship, and increasing the larval yellow perch mortality rate. Changing 
the K-values affects how efficient the predator is at eating the prey. Higher K-values imply 
predators are less efficient, as one-half of the maximum consumption rate is not obtained 
until prey densities are higher. We reduced the K-values of all life stages of yellow perch and 
walleyes eating zooplankton, and increased the K-values of all life stages of walleye eating 

Table 2. Changes to the baseline model configuration to simulate the mayfly (MF), forage fish (FF), zebra 
mussel (ZM), and cormorant (Birds) conditions in Oneida Lake.

Factor  Implementation in the IBM

MF  For June 5 to July 19:
  Triple equilibrium densities of benthos prey group
  Make YOY and yearling yellow perch invulnerable to walleye predation
  Eliminate harvest of adult walleye

FF  Triple equilibrium densities of forage fish prey group

ZM  40% increase equilibrium densities of benthos prey group
  20% increase in benthos production rate
  30% increase in perch larval mortality rate
  20% reduction in K-values of yellow perch and walleye eating zooplankton
  20% increase in K-values of all walleye eating forage fish and YOY and                                  
      yearling yellow perch and walleye

Birds  For April 1 to October 27:
  Additional mortality of YOY, yearling, age-2, and age-3 perch and walleye based 
      on the biomass of each, relative to the estimated total consumption of fish by 
      double-crested cormorants (see text). 
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YOY and yearling yellow perch, YOY and yearling walleyes, and forage fish. This makes the 
zooplanktivores more efficient at low zooplankton abundance and the walleye less efficient as 
piscivores. Finally, we increased the larval mortality of yellow perch from 0.03/d to 0.039/d. 
Previously in Rutherford et al. (1999), we imposed different magnitudes of changes on the 
benthos (20% versus 40%), also changed zooplankton densities and production rate, and did 
not include water clarity effects on feeding parameters and larval mortality.

While the field evidence is lacking for how zebra mussels may have changed survival of 
YOY yellow perch and walleye, survival rates of yellow perch have declined in the pelagic 
early juvenile phase (Mayer et al. 2000; Irwin et al. 2009). The results of the single factor 
simulations that permitted the long-term responses to baseline and zebra mussel conditions to 
be quantified (described below) showed reasonable reductions in yellow perch and walleye 
YOY survival. Our changes for zebra mussels, which included increased larval mortality of 
yellow perch, resulted in a roughly 50% reduction in survival of yellow perch from egg stage 
to August 15 relative to baseline conditions (survival fraction of 0.010 versus 0.021). Walleye 
survival from the 9-mm first-feeding stage to October 15 was about 0.12 under the single fac-
tor baseline simulation and decreased to about 0.06 under the zebra mussel single factor simu-
lation. Because the changes associated with zebra mussels resulted in a reasonable decrease in 
YOY walleye survival, we did not need to directly change walleye YOY mortality rates.

The effects of cormorants on walleyes and yellow perch were simulated by imposing a 
new source of mortality based on field estimates of cormorant densities and their per-capita 
consumption and diets. We used the average monthly counts of adults for April to October: 
330, 320, 374, 462, 843, 1625, and 412. These were averaged from the monthly values for 
1994 to 1997 reported in Rudstam et al. (2004). We added 300 chicks to the monthly counts 
of adult birds for June and July. We assumed each adult bird consumed 456 g wet weight of 
fish/d, and each chick consumed 327 g wet weight fish/d (Rudstam et al. 2004). Assuming 
80% of this consumption of fish was yellow perch and walleyes, we computed the total bio-
mass of yellow perch and walleyes consumed by cormorants each day of the simulation. This 
percentage consumption of percids is slightly higher than the reported 57–77% of mass con-
sumed by cormorants in Oneida Lake (Rudstam et al. 2004). The probability of being eaten by 
cormorants was then computed for yearling, age-2, and age-3 perch and for yearling, age-2, 
and age-3 walleyes as the biomass of that age-group consumed by cormorants, divided by 
the total biomass of that age-group in the population. If a generated uniform random number 
was less than the probability of being eaten, then the model individual was removed from the 
simulation as having been eaten by the cormorants.

Representation of Forney’s Management Algorithm

We very crudely mimicked how management of walleye harvest is practiced in Oneida 
Lake, which we term Forney’s algorithm. All other simulations used a constant age-4 as the 
first age of walleyes that was vulnerable to harvesting. We adapted the essence of Forney’s 
algorithm to the age-structure and idiosyncrasies of the model. On April 10 of each year, the 
adapted algorithm uses the computed biomass of walleye adults age-5 and older and density 
of sub-adults age-4 and younger (SA, number/0.1 -ha) from the previous year’s October to set 
the age of first harvest:

   ER = 1000 (28.71 + 22.9 SA – 24.4 SA2)     (1)
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The sub-adult density (SA) is used in a quadratic equation to forecast recruitment (ER, num-
bers in lake) for the upcoming year.

Then, the computed adults from the previous October, and the expected recruitment, are 
used to set the minimum age of harvest of walleyes for the current year beginning on April 
10 (Table 3). We also added the condition that if the density of adult walleyes age-5 and older 
was very low (<14 individuals/ha) at the beginning of the year (April 10), then the minimum 
age was set to 6; if adult walleye density was very high (>44 individuals/ha) on April 10, then 
the minimum age was set to 4.

Design of Single Factor and Time Series Simulations

A total of nine simulations were performed: 6 single factor and 3 time series. The single 
factor simulations examined the long-term, equilibrium responses to conditions designed to 
mimic the periods that have occurred in Oneida Lake: baseline (BL), mayflies (MF), forage 
fish (FF), zebra mussels (ZM), and zebra mussels and cormorants together (ZM-BIRDS). 
We also simulated long-term responses to cormorants alone (Birds), even though high cor-
morants did not occur alone in Oneida Lake, to better understand and isolate the effects of 
increased cormorants. All simulations used 25 years of baseline initial conditions, and then 75 
years of the single factor imposed. We analyzed the last 50 years of each simulation because 
while year-to-year variation still occurred, averaged values of abundances, survival rates, and 
lengths had stabilized (i.e., 60-years and 40-years yield almost identical mean values). The 
single factor simulations were designed to document the long-term perch and walleye popula-
tion dynamics if each of these periods persisted long enough for the populations to reach their 
quasi-steady state dynamics.

The time series simulations involved imposing the single factors (periods) for 10 years 
each: 1) in the same order they occurred in Oneida Lake (mayfly, baseline, forage fish, zebra 
mussels, zebra mussels plus cormorants), 2) in the reverse order, and 3) in the historical order 
but with Forney’s algorithm that dynamically set the age of first harvest. Each simulation used 
25 years of baseline conditions, followed by 10 years of each of the five periods for a total of 
75 years. We compared the averaged values of abundances, survival rates, and mean lengths 
of yellow perch and walleyes from each period to the long-term averaged (equilibrium) val-
ues obtained from the single factor simulations. The idea was to determine if we were seeing 
populations reach new equilibrium conditions within each period of the historical time series 

  Density    Recruits   Age

  < 13    <10    6
  < 13    10 to 25   5
  < 13    >25   5
  > 13    <25   5
  > 13    >25   4

Table 3. October adult walleye density (kg/ha), expected recruitment in the lake (Recruits #/ha) predicted 
from October sub-adult density (equation 1), and the resulting age at first harvest for adult walleyes for the 
next year beginning April 10. These rules were designed to convert Forney’s (1980) fisheries management 
algorithm, which was size-based, to operate in terms of age (yrs).
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simulation. The reverse time series simulation was also used to assess whether 10 years was 
sufficient for the complete responses to changed conditions to be observed in the historical 
time series simulation. If similar dynamics (i.e., averaged values) were obtained in each pe-
riod by going forward and in reverse order through the periods, then the results were insensi-
tive to what conditions occurred in the preceding period.

Finally, all single factor and historical and reverse time series simulations used a simple, 
constant age of first harvest for walleyes. We compared yields and population abundances and 
inter-annual variability (Coefficient of variation, CV = 100 × SD/mean) between the historical 
time series with the constant age versus the historical time series with Forney’s algorithm to 
determine any benefits of dynamically setting the age of first harvest.

We report model output variables that generally match the life stages and months of much 
of the monitoring data collected from Oneida Lake. Adult densities were the number per hect-
are of age-3 and older yellow perch and age-4 and older walleyes on April 10. Recruitment 
was defined as the number of individuals that survive to age-2. Spawners were the number of 
female individuals that actually spawned that year; they produced the total number of eggs we 
report. We used mean length at age-4 for yellow perch and at age-5 for walleye as indicators 
of adult growth. Survival of YOY was separated into stages: egg to 18-mm larvae, 18-mm 
larvae to juveniles on August 1, juveniles on August 1 to juveniles on October 15 for yel-
low perch; and egg to 9-mm larvae, 9-mm larvae to juveniles on August 1, and juveniles on 
August 1 to October 15 for walleyes. We also computed yearling survival rates from change 
in abundance of age-0 juveniles on October 15 to abundance of age-1 fish on October 15 for 
both species, and calculated survival rates of age-2 to age-3, and age-3 to age-4 fish based on 
changes in their abundances from April to April. The egg, 18 mm, and 9 mm abundances used 
in the survival estimates were the total number produced each year, whereas the August 1 and 
October 15 abundances were the number of YOY present on that day.

We computed averaged values of the output variables using the last 50 years of each 
single factor simulation, and for each 10-year period in the historical and reverse time series 
simulations. We also re-plotted the annual values of adult abundances of yellow perch and 
walleye from the reverse time series simulation with the historical time series simulation by 
matching periods. Thus, years 66–75 in the reverse simulation (mayfly) were plotted with 
years 26–35 of the historical simulation, years 56–65 with years 36–45, etc. To evaluate For-
ney’s algorithm, we compared predicted mean and CV of adult yellow perch and walleye 
densities, yield in numbers and biomass, and mean weight per individual harvested between 
the constant age-4 historical time series simulation and the historical time series simulation 
with Forney’s algorithm.

Because the degrees of freedom are arbitrary in our simulations, as we can make our 
simulations run as long as we like, we do not report the results of statistical analysis of the 
model outputs. The same difference in mean values can be statistically significant simply by 
making the simulations longer. Rather we interpret the magnitude of differences in means and 
CVs, admittedly somewhat subjectively, in the context of what we consider to be biologically 
important. We also report the results from single simulations of the model. The model is sto-
chastic and results depend on the random number sequence used. Repeated simulations using 
different random number sequences yielded very similar mean and CV values for the various 
output variables, and yielded annual time series values that exhibited different year-to-year 
variation but very similar temporal patterns.



11Analysis of Population Dynamics in Changing Ecosystem Conditions

Results

Single Factor Simulations

Simulations of mayflies and baseline conditions resulted in high adult abundances and 
recruitment of yellow perch, while forage fish and zebra mussels with cormorants (ZM-Birds) 
resulted in the lowest adult abundances and recruitment (Table 4). Mayflies resulted in long 
yellow perch adults (205 mm), which caused earlier age of maturation and a large number of 
spawners (40/ha) and high egg production about twice that of baseline (1.22 versus 0.72 × 
106/ha). YOY survival was about half under mayflies compared to baseline (S = 0.00266 ver-
sus 0.00595), while yearling survival was almost threefold higher (S = 0.070 versus 0.024). 
The net result was that the mayfly and baseline conditions had similar, relatively high, recruit-
ment to age-2 (36/ha and 35/ha).

Simulations of forage fish and ZM-Birds conditions resulted in low adult abundances and 
recruitment of yellow perch but for different reasons (Table 4). Forage fish conditions caused 
relatively larger sizes of walleyes and hence higher predation rates on yearlings, small adult 
yellow perch (193 mm), which with low adult abundance (71/ha), resulted in relatively few 
spawners (18/ha) and low egg production (0.54 × 106/ha). Despite high YOY survival (S = 
0.00753), yearling survival rates were low, hence recruitment also was low (22/ha). The zebra 
mussel component of ZM-Birds resulted in large yellow perch adults (ZM = 228 mm and 
ZM-Birds = 230 mm) and consequently high spawner abundances (44/ha and 36/ha) and egg 
production (1.82 × 106/ha and 1.52 × 106/ha), but also low YOY survival (S = 0.00249 and 
0.00300). The birds component resulted in low yearling survival that was similar to the low 
survival predicted for forage fish (S = 0.014 for birds versus S = 0.016 for forage fish), and 
lowered age-2 and age-3 survival (S = 0.65 and 0.66 for birds versus S = 0.69 and 0.70 for 
forage fish).

The birds-alone simulation showed that the long-term effects of the double-crested cor-
morants were apparent but moderate in magnitude (Table 4). Adult yellow perch abundance 
under birds only was somewhat lower than baseline (87/ha for birds versus 109/ha for base-
line), and similar to that predicted for zebra mussels (87 versus 88/ha). Survival rates for YOY 
and yearling life stages were similar or higher for birds only compared to baseline (YOY S = 
0.00726 for birds versus 0.00595 for baseline; yearling S = 0.020 versus 0.024), so that the 
slightly lower adult abundance was due to lower survival rates from age-2 to age-3 and from 
age-3 to age-4 (about S = 0.65 for birds versus S = 0.70 for baseline). While zebra mussels and 
birds alone yielded similar adult abundances, other aspects of their population responses were 
quite different. Zebra mussels resulted in longer adult yellow perch than birds alone (228 mm 
for zebra mussels versus 191 mm for birds) and higher egg production (1.82 × 106/ha versus 
0.60 × 106/ha) that was offset by much lower YOY survival (S = 0.00249 versus 0.00726), 
resulting in similar recruitment at age 2 (28/ha versus 29/ha).

Like yellow perch, walleye adult densities and recruitments also were highest under may-
fly conditions and relatively low under forage fish (39.4 adults/ha for mayflies versus 19.9 
adults/ha for forage fish, Table 5). Under mayfly conditions, adult walleyes were short (321 
mm) due to density-dependent effects on their growth rates, and thus egg production was not 
exceptionally high relative to baseline conditions (3.95 × 105/ha for mayflies versus 3.49 × 
105/ha for baseline). However, mayflies was the only period simulated in which walleye YOY 
and yearling survival were both high (S = 0.0000667 and 0.577), resulting in high recruitment 
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to age-2 (13.3/ha). Walleyes grew fast under forage fish (395 mm) because of the increased 
prey and low adult abundances, but the relatively high egg production (5.09 × 105/ha) was 
more than offset by low yearling survival due to cannibalism from larger adult walleyes (S = 
0.277).

Other than for mayflies, walleye adult abundances and recruitment did not differ as 
greatly among the conditions as occurred for yellow perch. There were differences among 
conditions in adult walleye growth and survival rates, so the similar adult walleye abun-
dances and recruitments arose for different reasons. Walleye adults grew fast with added 
prey under forage fish and zebra mussels conditions (395 mm for forage fish, 383 mm for 
zebra mussels), which lead to high spawner numbers (6.3/ha and 6.8/ha) and egg produc-
tions (5.09 and 4.94 × 105/ha). However, either YOY survival was low (S = 0.0000296 in 
zebra mussels) or yearling survival was low (S = 0.277 in forage fish), negating the high 
egg production. The isolated response of walleyes to birds alone was relatively low adult 
abundance (19.0/ha) and low recruitment to age-2 (7.5/ha), similar to forage fish (adults 
= 19.9/ha, recruits = 6.8/ha). However, adult growth was slow (360 mm), resulting in low 
spawners (4.5/ha) and egg production (3.7 × 105/ha), which when combined with moderate 
YOY and yearling survival (S = 0.652 and 0.385) resulted in somewhat low recruitment 
(7.5/ha). Survival rates from age-2 to age-3, and from age-3 to age- 4 were also lower un-
der the bird alone simulation (S = 0.89 and 0.91 for birds versus S = 0.94 for forage fish). 
Interestingly, while adding the bird effect to zebra mussels had a negative effect on yellow 
perch adult abundances (88/ha under ZM to 71/ha under ZM-Birds), adding the bird effect 
to zebra mussels had no effect on walleye abundances (23.1/ha under ZM to 23.1/ha under 
ZM-Birds).

Historical and Reverse Times Series Simulations

Time series simulations of adult yellow perch and walleye densities were qualitatively 
similar to temporal trends of adult densities observed in Oneida Lake from the late 1950s 
through 2001 (Figure 1). Mean values of adult densities observed in Oneida Lake were posi-
tively correlated (P < 0.01, r = 0.92, n = 8) with those predicted by the model. Simulated den-
sities of adult yellow perch peaked early during the mayfly period, progressively decreased 
from the baseline throughout the period of record ending in the ZM-Birds. Averaged adult 
abundances during each period was 147/ha for mayflies, 123/ha for baseline, 95/ha for forage 
fish, 90/ha for zebra mussels, and 70/ha for ZM-Birds. Simulated densities of adult walleyes 
increased under mayflies before dropping rapidly under baseline, continued to be low under 
forage fish, and then increased slightly in the zebra mussel period, before declining further 
under ZM-Birds. Averaged adult abundances (number/ha) were 27.8 under mayflies, 26.9 
under baseline, 20.6 under FF, 25.0 under ZM and 19.9 under ZM-Birds.

The mean values and trends predicted for each period of the historical time series simu-
lation were generally robust. Mean adult abundances, recruitment, YOY survival, and mean 
lengths by period for yellow perch (Figure 2) and for walleyes (Figure 3) were similar among 
the historical time series, reverse time series, and single factor simulations. Some notable 
exceptions were the higher yellow perch adult abundances and recruitment and lower walleye 
adult abundances for the mayfly period for the time series simulations compared to equilib-
rium values, and large variation in walleye adult mean lengths across the three simulations for 
the mayfly and baseline periods.
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Annual values of adult abundances from the reverse time series simulation, when parsed 
and re-plotted with their corresponding periods in the historical time simulation, mostly tracked 
the trends in each period of the historical time series simulation (Figure 4). The two exceptions 
were yellow perch in the ZM-Birds periods (first in the reverse simulation) and walleyes in the 
baseline period (third in the reverse simulation). For yellow perch, the ZM-Birds period in the 
reverse simulation had high abundances entering from the previous period of baseline (initial 
conditions), whereas the ZM-Birds period in the historical simulation had low adult abun-
dances entering from the ZM period. Walleyes in the baseline condition in the reverse simula-
tion showed a low but increasing adult abundance compared to sharp decline in the historical 
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Figure 2. Averaged values of adult abundance, recruitment, YOY survival, and mean total length at age-4 
for yellow perch by each 10-year period in the historical time series simulation and the reverse time series 
simulation. Also shown are the equilibrium values based on averaging the last 50 years of the single factor 
simulations.
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simulation. In the reverse time series situation, the preceding period of forage fish resulted in 
low abundance entering the baseline period, whereas in the historical simulation the preced-
ing period of mayflies resulted in high abundances entering the baseline period. By the end of 
each of these periods, however, the model had adjusted to the different entering conditions, and 
similar adult abundances were predicted for the reverse and historical time series simulations.

Fisheries Management Simulation

Our age-based implementation of Forney’s algorithm had little effect on yellow perch yield 
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Figure 3. Averaged values of adult abundance, recruitment, YOY survival, and mean total length at age-5 
for walleyes by each 10-year period in the historical time series simulation and the reverse time series 
simulation. Also shown are the equilibrium values based on averaging the last 50 years of the single factor 
simulations.
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and population dynamics compared to the constant age simulation, and resulted in a less vari-
able walleye population with similar biomass harvested that was comprised of slightly more 
but smaller fish (Table 6). Mean and CV of adult abundance, yield in biomass and numbers, 
and average weight of a harvested yellow perch were similar between the constant age-4 and 
Forney’s algorithm simulations. Walleye adult abundance and yield in biomass were also simi-
lar between the two simulations. However, the CV of adult walleye abundance was lower for 
Forney’s algorithm compared to the constant age-4 simulation (CV = 26% for Forney’s versus 
37% for constant age), and the roughly 5,000 g/ha yield had more fish (7.2 versus 6.5) that were 
smaller in body weight (873 versus 997 g). Frequency distributions of adult walleye abundances 
and yields suggested that the constant age-4 limit produced fewer years of low catches (number 
and weight) and population sizes compared to Forney’s algorithm (Figure 5).

Discussion

Mayflies were beneficial to yellow perch and walleyes, while forage fish had negative 
effects. For both species, high adult abundances and recruitment were predicted under the 
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Figure 4. Model simulated adult abundances of yellow perch (upper) and walleyes (lower) for each of the 
10-year periods of the reverse time series simulation re-plotted with the same period in the historical time 
series simulation.
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mayfly condition, and low abundances and recruitment were predicted under the forage fish 
condition. Yellow perch under mayfly conditions grew fast and had high egg production with 
a net increase in egg to age-2 survival (YOY survival decreased but yearling survival in-
creased even more). Walleyes under mayfly conditions were able to have high YOY and year-
ling survivals, which did not occur in any of the other conditions. Forney (1980) concluded 
that the presence of mayflies buffered predation by adult walleyes on YOY yellow perch 
and YOY walleyes, and created stable abundances of yellow perch and walleye. Essentially, 
more energy in terms of prey was added to the system so that yellow perch could grow fast 
and walleyes could eat without increasing the mortality of yellow perch. Earlier IBM simu-
lations by Rose et al. (1999) supported the contention that mayflies stabilized dynamics of 
yellow perch and walleyes, and these new simulations reported here support that conclusion. 
Although our model results suggest the primary effect of mayflies on percid recruitment was 
to buffer predation by adult walleyes on young walleyes and yellow perch, in other areas such 
as western Lake Erie (Tyson and Knight 2001) and Saginaw Bay, Lake Huron (Schaeffer et 
al. 2000), mayflies were believed to increase yellow perch recruitment through their positive 
effects on yellow perch consumption, growth, and size-dependent survival.

Simulations involving forage fish and zebra mussels resulted in low adult abundances and 
recruitment for yellow perch and walleyes. For yellow perch, increased forage fish densities 
produced larger walleyes with increased predation rates, and resulted in lower egg production, 
while zebra mussels and ZM-Birds resulted in low YOY and yearling survival rates. For wall-
eyes, increased forage fish densities caused large walleyes that resulted in higher cannibalism 
and low yearling survival, while zebra mussels and ZM-Birds caused low YOY survival. The 
differences in walleye adult abundances among conditions were less than for yellow perch so 
statements about the relative effects of baseline, forage fish, zebra mussels, birds, and ZM-
Birds on walleyes are tentative. However, long-term monitoring of walleye populations in 
Oneida Lake indicates that adult densities were essentially stable from the late 1950s until the 
early 1990s (Rudstam et al. Chapter 15).

We included an increased water clarity effect in the zebra mussel simulations that was 
not included in earlier IBM simulations. In a previous IBM simulation of zebra mussel ef-

Table 6. Simulated average and CV of yields (kg and #/ha), adult densities (#/ha), and mean weight of a 
harvested individual (g) of walleyes (WE) and yellow perch (YP) under a first harvest of age-4 and under 
Forney’s modified management algorithm. Adults are age-3 and older for yellow perch, and age-4 and older 
for walleyes, recorded on April 10 of each year.

            Constant age-4       Forney’s algorithm
Variable         Mean  CV       Mean  CV

WE yield (g/ha)   5,676 ± 339 21  5,487 ± 384 25
WE yield (#/ha)       6.5 ± 1.0 53      7.2 ± 1.0 51
WE adults (#/ha)     24.1 ± 2.5 37    25.9 ± 1.9 26
Avg. WE wt harvested (g)     997 ± 89 32     873 ± 74 30
    
YP yield (g/ha)   4,106 ± 250 22  3,902 ± 275 25
YP yield (#/ha)     22.6 ± 2 30    21.1 ± 1.9 32
YP adults (#/ha)      105 ± 9 31       98 ± 9 32
Avg. YP wt harvested (g)     191 ± 15 27     195 ± 14 26
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Figure 5. Frequency distributions of walleye biomass harvested (Top), number harvested (Mid), and adult 
abundances (Bottom) predicted under constant age-4 limit and Forney algorithm.
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fects on walleyes and yellow perch, we focused on the consequences of energy being shunted 
to the benthos, and so imposed reduced zooplankton density and production and increased 
benthos density and production in model simulations (Rutherford et al. 1999). In these new 
simulations, we modified the energy shunt effect to only increase benthos, and in addition, we 
increased mortality of yellow perch larvae, increased the foraging ability of yellow perch and 
walleyes to eat zooplankton, and lowered the foraging ability of walleyes to eat fish. Mayer 
et al. (2000) analyzed a 30-year time series of yellow perch lengths and concluded that, after 
accounting for density dependent effects, growth rate of YOY yellow perch was significantly 
faster under zebra mussels than in earlier periods. Mayer et al.’s (2001) laboratory experi-
ments indicated that zebra mussels affected the amphipod-yellow perch interaction in two 
ways. Increased structural complexity decreased amphipod availability to the fish, while in-
creased light associated with higher water clarity increased the ability of yellow perch to feed 
on amphipods. However, the frequency of amphipods in yellow perch diets increased after 
the zebra mussel introduction. Similarly, in mesocosm experiments (Thayer et al. 1997) and 
in field surveys in Lake Erie (Tyson and Knight 2001), yellow perch increased consumption 
of benthos after zebra mussel invaded, suggesting that increased visibility due to zebra mussel 
filtration increased yellow perch capture success for both benthic and pelagic prey. When we 
increased both benthos and zooplankton density and production in the model, we saw faster 
growth in YOY and yearling yellow perch so we eliminated the zooplankton effect, and only 
increased benthos densities and production (not zooplankton) and increased the foraging abil-
ities (by lowering the K-values) of yellow perch and walleyes eating zooplankton. Although 
experiments by DeRobertis et al. (2003) suggested that zooplanktivores would become less 
efficient at foraging relative to piscivores, studies at Oneida Lake by Wahl et al. (1993) and 
elsewhere (Bergman 1988; Diehl 1988; Richmond et al. 2004) on yellow perch, and stud-
ies by Lester et al. (2004) and Chu et al. (2004) on walleyes suggest that increased light 
will improve foraging efficiency of yellow perch more than for walleyes. It is also possible 
that walleye foraging efficiency would decrease owing to increased macrophyte growth and 
refugia for yellow perch (Zhu et al. 2006). Until further field and laboratory results suggest 
otherwise and resolve some inconsistencies in the empirical information, our implementation 
of the zebra mussel effect seems reasonable.

Our simulations suggest that, in the long-term, increased double-crested cormorants neg-
atively affected yellow perch and certainly did not benefit walleyes. Yellow perch adult abun-
dances and recruitment under equilibrium conditions were moderate for birds alone and low 
for ZM-Birds; however, the effect of cormorants on equilibrium adult abundances and recruit-
ment of walleyes were less dramatic. Averaged walleye adult abundances and recruitment 
under equilibrium simulations and historical time series simulations were roughly similar to 
the values predicted for the baseline, forage fish, and zebra mussel conditions. The historical 
time series simulation indicated that yellow perch seemed to decline during the forage fish 
period, and then increased during the zebra mussels period before declining again during the 
cormorants period. For walleyes, the decline in the historical time series simulation occurred 
earlier during the baseline period and then stayed low during zebra mussels, with the addition 
of increased cormorants causing stable but low and perhaps less variable adult walleye abun-
dances. Empirical analysis of long-term monitoring data (VanDeValk et al. 2002; Rudstam et 
al. 2004) indicated that the recent decline in walleye and yellow perch adult abundance was 
caused mainly by cormorant predation on age-1 through age-3 fish, and not by effects of ze-
bra mussels. Rudstam et al. (2004) suggested that the cormorant effect was larger on yellow 
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perch than on walleyes. For the year classes of 1993 to 1998, they concluded that cormorants 
consumed from 21 to 60% of the walleyes expected to recruit to age 4 from the number pres-
ent as age 1. Similar numbers for yellow perch ranged from 9 to 121%. The model results 
are in general agreement with these empirical analyses: a relatively large, negative effect for 
yellow perch and smaller negative effect on walleyes. Double-crested cormorants also have 
impacted yellow perch populations in other Great Lakes areas. In northern Lake Huron, Diana 
et al. (2006) estimated cormorant consumption of yellow perch in 1995, and concluded that 
declining recruitment, and not cormorant predation, was the likely cause for the perceived 
decline in the yellow perch population. However, a more recent analysis of yellow perch 
yields, abundances, adult mortality rates, and recruitments from the 1980s through 2004 sug-
gests cormorant predation was the major cause of yellow perch population decline in this area 
(Fielder 2008, 2010).

The similarity in results among the empirical analyses for Oneida Lake (Rudstam et al. 
Chapter 16) and our modeling results is not surprising given that we configured the IBM 
simulations using per-capita consumption rates and abundances of cormorants reported by 
Rudstam et al. (2004) and VanDeValk et al. (2002). However, the model runs demonstrated 
the effects over a 75-year time frame (about six walleye generations) with all other factors 
held constant compared to empirical analyses spanning 14 years (about one generation) with 
other potentially confounding sources of variation present.

The general agreement between the historical time series, reverse time series, and equi-
librium (single factor) simulations implies that 10 years is sufficient to see the major effects 
of each period and that the order of the periods is unimportant in determining the responses. 
In a few cases, previous periods affected whether high or low adult abundances would enter 
a particular period, but the model rather quickly adjusted abundances and recruitment to re-
flect the conditions in the period of interest. The model set-up was ideal for equilibrium to be 
reached quickly because we did not include many sources of inter-annual variation that could 
add noise and thereby slow down the transition to equilibrium conditions. We did additional 
time series simulations with the periods in different sequence than the historical and reverse 
sequences, and generally saw similar results (i.e., period-specific averages were similar across 
different sequences). These results suggest that hysteresis is not a major concern and that if 
cormorants could be controlled and early life survival increased for yellow perch and wall-
eyes, both populations could rather quickly recover within a decade or so. Our conclusions 
from the virtual world are highly speculative, given that hysteresis seems to be a reality for 
Oneida Lake and many other ecosystems (Duarte et al. 2009) because of shifting baselines and 
ecological regimes (Zhu et al. 2006), real variability and changing environmental conditions 
(i.e., warmer water temperatures, reduced phosphorus concentrations) (Irwin et al. 2009).

The model simulations suggested that a simple constant age-based limit can maintain 
stable walleye populations as effectively as an age-based version of Forney’s algorithm. The 
major difference was a lower CV of walleye adult abundances and fewer years of low catch 
and population abundance under Forney’s algorithm compared to the constant age-4 limit, 
but the reduction in CV was not very large in magnitude. One possible reason for the similar 
performance of the constant age and Forney’s algorithms is that fishing mortality on walleyes 
is represented as inversely related to forage fish abundance in the model. This acts to stabilize 
the walleye population because high mortality leads to low walleye abundance, which then 
reduces predation pressure on forage fish and higher forage fish density. The higher forage 
fish density then acts to lower the fishing mortality rate on walleyes. VanDeValk et al. (2005, 
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Chapter 17) documented that in Oneida Lake, walleye catchability was independent of wall-
eye abundance and inversely related to walleye growth, which was a surrogate for forage fish 
abundance. Density independent catchability has been reported for many, but not all walleye 
populations (Hansen et al. 2005). Our crude approximation of Forney’s (1980) management 
algorithm did serve to stabilize walleye adult abundance more than a constant age simulation, 
but the other potential benefits of Forney’s algorithm may have been overshadowed by the 
stabilizing effect of fishing mortality dependent on forage fish density, which was included in 
both the constant age and Forney’s algorithm simulations.

While the argument sounds reasonable, additional model simulations showed that the 
dependence of walleye fishing mortality rate on forage fish density had only a moderate ef-
fect on the relative performance of Forney’s algorithm. We repeated the historical time series 
simulations with a constant fishing mortality for walleye (i.e., 8% per month not dependent 
on forage fish density) under a constant age-4 and Forney’s algorithms, and again obtained 
similar yields and adult abundances with a reduction in CV of walleye adult abundance of 
50% to 34% (compared to 37% to 26% with fishing dependent on forage fish).

Another possible explanation for why a constant age and Forney’s algorithm generated 
similar results is in our implementation of Forney’s algorithm. We implemented the algorithm 
based on age of first harvest rather than size at first harvest. In the model, variance in walleye 
size increased unrealistically when we imposed Forney’s algorithm based on length, so we 
imposed regulation changes based upon changes in age. This is a deficiency in the model 
formulation that allows unrealistic growth under certain conditions. Our age-based version of 
Forney’s algorithm could be a major deviation from how the algorithm is intended to operate 
because using age uncouples the link between density-dependent growth and harvest limits.

Our model simulations were conducted without fry stocking that has occurred in Oneida 
Lake since the 1890 s (Brown et al. Chapter 5), but Rose et al. (1999) indicated that model 
results would be robust to stocking of walleye fry. With increased stocking of walleye fry, sta-
bilization is encouraged and would result in reduced coupling of walleye and perch predator–
prey population dynamics.

The Oneida Lake database enabled us to develop and test a detailed individual-based 
model of predator–prey interactions and the dynamics of a simple two-species system. Pred-
ator–prey dynamics have been a focus of debate and ecological modeling for decades (e.g., 
Abrams and Ginzburg 2000), and both simple Lotka-Volterra type models (e.g., Gourley and 
Kuang 2004; Liu and Chen 2003) and more complex individual-based models (e.g., Mc-
Cauley et al. 1993; Cuddington and Yodzis 2000) continue to be developed and analyzed. 
Our analyses enabled full life cycle simulations of yellow and walleyes through a complex 
pathway of interactions involving competition for prey at some life stages and predator–prey 
interactions (including cannibalism) at other life stages. Both compensatory and depensa-
tory density-dependent growth and mortality were included. The oversimplification of such 
complex interactions in mass-action (Lotka-Volterra-like) models has long been a source of 
criticism (e.g., Hall 1988). Yet, developing more detailed models can be criticized for limited 
data and high uncertainty. The Oneida Lake situation enabled the development of a complex 
model with a relatively high degree of confidence. Therefore, our exploratory analyses of the 
different regime periods and Forney’s management algorithm were done in a more realistic 
situation than typically possible in more data-poor situations. There is a large effort towards 
developing multispecies fish models, as a step towards ecosystem-based management (Latour 
et al. 2003). Development and testing of modeling approaches using well-studied systems, 



23Analysis of Population Dynamics in Changing Ecosystem Conditions

such as was done with the two-species IBM here, can provide a sound foundation for further 
development of multispecies models. Simple and individual-based predator–prey models will 
also continue to be developed and used to test key theoretical aspects of population dynamics, 
such as how to formulate predator–prey interactions, how to incorporate behavioral aspects, 
population responses arising from density-dependence occurring in multiple life stages, and 
the effects of different types of stressors and perturbations on population and community 
dynamics.

Future development and simulations of the IBM should examine effects of reduced pri-
mary productivity and increased spatial complexity on walleye and yellow perch dynamics. 
As light levels in lakes have increased due to zebra mussel filtration and reduced phosphorus 
levels, aquatic macrophytes have increased (Zhu et al. 2006), creating refugia for young-of-
year stages; a spatially-explicit version of the IBM (e.g., four-five spatial strata) would allow 
for more realistic simulation of walleye and yellow perch encounters. Simulations can be 
performed to examine recovery approaches for yellow perch and walleye, and to assess how 
global climate changes might affect yellow perch and walleye population dynamics.

Summary

Walleye and yellow perch are the dominant predator and prey species in the Oneida Lake 
fish community and support a valuable recreational fishery. Abundances and yields of both 
species have fluctuated greatly over time in response to fluctuating ecosystem conditions that 
include disappearance of mayflies, irruptions of forage fish species, invasion by zebra mus-
sels, and establishment of double-crested cormorants. We used an individual-based model 
(IBM) to disentangle effects of multiple factors on walleye and yellow perch population dy-
namics by simulating each ecological condition: baseline; high mayfly densities; high forage 
fish densities; zebra mussel impacts on water clarity, benthos density, and percid foraging 
efficiency; high cormorant predation; and zebra mussels and cormorants together. We also 
compared the effect of a constant age-based limit on walleye harvest to an approximation 
of the existing walleye management plan of Forney (1980) to determine if the existing plan 
produced higher and more stable walleye yields than the constant age limit.

Model results indicated walleye and yellow perch populations were highest under simu-
lated mayfly conditions, and lowest under high forage fish conditions. Compared to baseline 
conditions, walleyes were relatively unaffected by zebra mussels but moderately affected by 
cormorants whereas yellow perch abundances and recruitments declined under both simu-
lated zebra mussel conditions and cormorant conditions, but for different reasons. Survival of 
yellow perch prerecruits was lower and survival of postrecruits similar under simulated zebra 
mussels compared to baseline conditions. In contrast, survival of age-1 and postrecruit yellow 
perch was lower during cormorant conditions compared to baseline conditions. The simu-
lated response of walleye and yellow perch dynamics to changing ecological conditions was 
robust to length of exposure (10 years versus 75 years), and the order in which the ecological 
conditions occurred. The general agreement between the historical time series, reverse time 
series, and equilibrium (single factor) simulations implies that 10 years is sufficient to see the 
major effects of each period and that the order of the periods is unimportant in determining 
the responses. Simulated walleye harvests predicted for the constant age limit were similar, 
but more variable, than those predicted using Forney’s management algorithm. The model 
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results generally support conclusions from empirical studies of walleyes in Oneida Lake, but 
indicate that zebra mussels may have had a greater impact on yellow perch population trends 
than was indicated from the historical database. Although speculative, our results suggest that 
hysteresis is not a major concern and that if double-crested cormorants could be controlled, 
both yellow perch and walleye populations could recover within a decade or so.
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