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Optimal crop choice and fertilizer applications depend on the stochastic dynamics of commodity
prices, fertilizer prices, and the agronomic effects of rotation versus monoculture. The efficient
decision rule accounts for real option values associated with maintaining land disposition in
an environment with highly uncertain future prices and irreversible past planting decisions. We
parameterize a baseline model for a representative acre in Iowa and compare the model’s pre-
dictions and profits to relatively naive, shorter horizon decision rules, and a field managed with
optimal fertilizer applications conditional on corn and soybeans always being rotated. We also
examine the effects of a permanently larger premium on corn prices relative to soybean prices,
which has been observed in locations near recently established ethanol plants. We then compare
the various decision rules to actual crop choices in a panel of over 6,500 Iowa plots during 1979–
2007. As compared to less forward-looking objectives, we find the agronomic benefits of rotations
coupled with real option values can lead to a more inelastic response of planting decisions to
both transitory and permanent price changes. Always rotating, regardless of prices, is close to
optimal, but so are shorter-horizon objectives. One implication is that reduced corn monoculture
and fertilizer application rates might be implemented with modest incentive payments of $4 per
acre or less.
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Corn and soybeans, the two largest crops
in the United States and among the most
important food staples in the world, are typi-
cally grown in rotation. That is, on any given
parcel, a farmer will typically grow soybeans
in one year and corn the next. For example,
based on the US Department of Agriculture’s
Agricultural Resource Management Survey
Phase II survey data, an estimated 63 percent
of acres planted to corn in Iowa in 2005 were
planted with soybeans the year before. This
rotation practice is predominant in the highly
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productive Corn Belt region and some, but
not all, other regions of the United States.
The main incentive to rotate crops comes
from higher yields and lower input costs
enjoyed by farmers who rotate in compar-
ison to farmers with similar land that grow
the same crop every year. Yields of rotated
crops are higher because rotations reduce
pest problems and enrich soils. Soybeans, for
example, fix nitrogen that is used by the sub-
sequent corn crop, thereby reducing fertilizer
costs for corn (Mallarino, Ortiz-Torres, and
Pecinovsky 2004; Hennessy 2006). Farm-level
rotational decisions are thus fundamental to
crop supply and input use, and factor greatly
into the amount of nutrient runoff and water
quality problems that affect the nation and
the world. It is therefore critical for policy
considerations to understand the economic
tradeoffs that underlie these decisions.

Due to the productivity gains of rotation, it
may only be optimal to plant the same crop
two years in a row if a crop’s relative price is
high enough to offset lost productivity. If a
farmer believes a crop’s relatively high price
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could possibly increase further in subsequent
years, it may still be optimal to rotate even
if the price premium exceeds the immediate
costs of monoculture. This additional benefit
of rotation (or cost of not rotating) comprises
an option value (Dixit and Pindyck 1994)
that to our knowledge has not been previ-
ously considered. The option value accounts
for the ongoing value of maintaining maximal
productive efficiency, a value that pays off
when unusual high-price opportunities arise.
A myopic rule that does not account for the
value of exercising the option of planting
corn after corn instead of planting soybeans
after corn, for example, would call for plant-
ing corn after corn too often. Generalizing
this idea, the optimal decision rule ultimately
depends on the relative prices of corn and
soybeans in the current year, and the whole
distribution of anticipated prices for corn
and soybeans in futures years, in addition to
the agronomic tradeoffs embodied in past
planting decisions.

While the basic agronomic benefits of
rotations are well known and fairly well
understood, the phenomenon presents a
challenging stochastic dynamic economic
problem surrounding optimal planting deci-
sions in an environment when commodity
and fertilizer prices are uncertain and highly
autocorrelated over time. In this article, we
solve this problem and demonstrate some
implications for the supply of these prevalent
commodities. As intuited above, in compar-
ison to the solution to the static problem,
the forward looking, dynamic optimum is
much less likely to deviate from rotating corn
after soybeans and vice versa, in response
to price movements. Somewhat counterin-
tuitively, a farmer applying a simple rule of
always rotating, regardless of price, often
performs better over the longer run than a
farmer optimizing over a shorter time hori-
zon. Stochastic-dynamic considerations may
therefore help to explain an inelastic sup-
ply response of agricultural commodities or,
more generally, farm management practices
that nearly mimic agronomic maximization,
at least with respect to crop choice.

Burt and Allison (1963) were first to
consider crop rotations in a stochastic and
dynamic programming (SDP) framework.
Their article, among the first applications
of SDP, considered the decision to leave a
field fallow or to plant wheat in an environ-
ment where soil moisture evolved according
to a Markov process. In subsequent work,

Burt and other scholars have considered
specialized crop management decisions in
contexts with random state variables pertain-
ing to pest problems, irrigation water, and
other agronomic factors (Burt and Stauber
1971; Dudley and Burt 1973; Yakowitz 1982;
Pandey and Medd 1991). Many have used
SDP for modeling commodity storage prob-
lems and for agricultural, biological, and
ecological modeling (Kennedy 1986; Williams
and Wright 1991; Deaton and Laroque 1992).
But the literature has generally been slow
and reluctant to use SDP to model planting
decisions more broadly, especially as a pos-
itive model to describe farmer behavior. To
our knowledge, this article is first to explicitly
consider the consequences of price uncer-
tainty on sequential crop planting decisions
using an SDP framework.

Crop rotations have been incorporated
into some linear programming models
(El-Nazer and McCarl 1986; Musser et al.
1985; Johansson, Peters, and House 2007),
but these models do not account for the
sequential nature of planting decisions, or for
option values related to price uncertainty.
That is, these models take multiyear rotation
rules as a single decision, with future prices
assumed known in advance, as if the problem
were static, nonsequential, and nonstochastic.
There are, of course, great computational
advantages to these alternative approaches.
In some earlier models of aggregate supply,
current supply is sometimes conditioned on
past aggregate plantings, which may proxy
for rotational effects, but there is no explicit
account of parcel-specific choices (Eckstein
1984; Burt and Worthington 1988). Recent
work by (Song, Zhao, and Swinton 2011) con-
siders option values connected to changing
land use from crop production to perennial
energy crops. This work, like ours, is partly
motivated by recent biofuel policies.

Given the importance of crop rotations
has long been widely acknowledged, it is
natural to ask why there has been so little
modeling of rotational decisions using an
SDP framework. The most obvious answer
is that SDP modeling with more than one
or two continuous state variables can be
computationally expensive. But time and
rapidly advancing computer technology have
lowered the computational expense of larger
scale SDP problems. Also, methods in com-
putational economics have matured, with
several contributors making their computer
code publicly available, further lowering
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the costs of implementing SDP models.
While computational limits still constrain
the complexity of these models, with a few
simplifying assumptions, we are able to
develop a model that captures the most
salient aspects of the corn versus soybeans
planting decisions that govern a significant
share of highly productive cropland in the
midwestern United States.

In the next section we describe the param-
eterization of the model. We then report
econometric estimates of the key parameters,
followed by a description of the algorithm
used to solve the SDP. We then compare
profits and crop choices of the optimal
infinite-horizon policy to policies derived
from assuming maximization over 1- and
2-year horizons rather than the infinite hori-
zon SDP, as well as a policy that optimizes
input use conditional on an “always rotate”
rule of thumb. To explore the potential
effects of recent ethanol expansion on plant-
ing decisions, we consider the effect of pre-
mium corn prices that have been documented
for fields located near ethanol plants. Finally,
we compare predictions from the infinite
horizon model and alternative objectives to
actual crop choices observed on parcels sam-
pled by the National Resources Inventory.

A Stochastic Dynamic Model of Crop Choice

Consider planting decisions for a standard-
ized unit of land. At a sufficiently small scale,
crop choice is discrete, even though when
aggregated across all units for a given farm,
county, or state, the decision will approximate
a continuous decision. To focus squarely on
the issue of rotational dynamics, we assume
no time or capital allocation constraints, spa-
tial interaction effects, or farm-level capital
or liquidity constraints that would force us
to model planting decisions at the farm level.
Instead, each unit of land is regarded as an
independent “profit center,” and by maximiz-
ing profit from harvesting crops on each unit
of land, each farm maximizes its value as a
whole.

There is some arbitrariness about how big
or small an individual unit of land may be.
It should usually be treated as a contiguous
parcel of land that is typically growing only
one crop per season. We might think of this
as a “field” where, for agronomic reasons, it
would not make sense for a farmer to plant
different crops on the same field. If this is not

the case, then the “field” should be conceptu-
ally subdivided into smaller parcels for which
the farmer almost always plants only one
crop or the other. For this analysis, we will
abstract away from the size of the unit even
though in a more general model unit size may
be chosen simultaneously with crop choice.
As such, we also abstract away from portfolio
considerations that have been a traditional
focus of planting decisions under uncertainty.
The data to which we compare our model’s
predictions refer to specific points where the
discrete crop choice is indicated. We report
values and output on a per-acre basis.

Our yield data on crop rotations and input
use, which we use to calibrate the model,
are from an experiment station in north-
east Iowa. As such, the model we develop is
most relevant to that region of the country
and nearby regions with similar soils and
climate. Iowa, being the largest corn and
soybean producer in the United States, and
likely the highest concentration of corn and
soybean production in the world, is a salient
focus.

The main features we want the model to
be capable of predicting are (1) the pattern
of planting, (2) the relative frequency of
corn versus soybean plantings, and (3) the
sensitivity of optimal planting decisions to
exogenous changes in commodity or input
prices. There are two ways in which we
examine the question of price sensitivity.
First, prices change over time in a stochas-
tic fashion. Second, evidence in previous
research shows that corn prices are higher
near recently established ethanol plants.
A key focus will be on how decision rules
differ depending on the planning horizon of
the farmer, and which best predicts actual
planting decisions.

A key simplifying assumption is to model
crop revenues per acre, price multiplied
by yield, rather than keeping prices and
yields separate. This simplification accounts
for price-yield correlations stemming from
spatially-correlated weather and pest out-
comes. Historical revenue-per-acre data
also appear strongly stationary, despite a
significantly increasing trend in yields and
decreasing trend in real prices. Stationarity
is necessary for describing the stochas-
tic autoregressive processes for our state
variables that we discuss below. This one sim-
plification therefore solves both the problem
of price-yield covariance and the problem of
nonstationarity.
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In general, a long history of crop choices
and soil management choices may influence
current expectations for yield and revenue.
Incorporating a long crop history for a large
number of possible crops would greatly
increase the state space and render a solution
computationally infeasible. Thus, to simplify
the problem, we consider economically effi-
cient choice among just two crops, corn or
soybeans, together with the optimal continu-
ous application of nitrogen fertilizer, where
we denote crop choice, it , and nitrogen fer-
tilizer use, nt , for a field of arable land, on
which either soybean, it = 0, or corn, it = 1,
may be produced. Although just two crop
choices limits the scope of the model, these
two particular crops are exclusively planted,
or nearly so, on a large share of the nation’s
most productive cropland.

We consider models in which up to 3 years
of crop history may affect current revenues.
Crop choices more than 3 years past are not
economically or statistically significant in
regression analysis of yields from experi-
mental field plots (we show this below). To
account for this history, we denote a crop-
specific adjustment factor ai(It , nt), where It
denotes crop history at planting time in year
t. This function gives a proportional adjust-
ment to expected revenues for each crop i
that depends on past plantings and nitrogen
fertilizer application in the current year (nt).

Field-level expected revenues are also tied
to the stochastic evolution of prices and to
the broader covariance between prices and
yield. To account for both autocorrelation
of prices and current-period covariances
between prices and yields, we model cur-
rent expected revenues for any given field as
being tied to expectations about state-level
revenues per acre. State-level revenues, like
prices, are observed, publicly available, and
exogenous to field-level decisions. State-level
revenues per acre equal the average price
received in Iowa multiplied by the realized
state-level yield. We denote these state-level
revenues by rc

t and rs
t for corn and soybeans,

respectively. State-level revenues per acre,
like prices, display strong autocorrelation,
so that past revenues strongly influence
expectations about current revenues. “Field-
level” revenues are given by the crop-specific
adjustment factor multiplied by state-level
revenues. The idea is that an individual
farmer’s planting and fertilizer application
decisions will affect his or her own revenues
by the same proportion that it affects the

farmer’s yield. In other words, we assume
field-level marginal yield effects are too small
to affect price or yield at the state level.

(1) Field Revenues = ri
ta

i(It , nt).

The other critical factor affecting profits of
corn relative to soybeans is nitrogen fertilizer
prices, which are autocorrelated and show
strong association with state-level corn and
soybean revenues per acre (this is shown in
an online appendix). Unlike revenues per
acre, however, fertilizer prices, denoted ft , are
observed at the time of the planting decision.

We assume expectations about current
and future profits are a function of past
state-level revenues per acre for corn, past
state-level revenues per acres for soybeans,
current fertilizer prices, and planting history.
The farmer makes optimal planting and fertil-
izer decisions while anticipating how current
decisions affect both current and future profit
opportunities.

To evaluate these expectations, we assume
these three state variables follow a 1st-order
vector autoregressive process:

(2) pt+1 = a + pT
t B + ut+1

where pt is a vector composed of lagged corn
and soybean state-level revenues per-acre
and current-period fertilizer prices:

(3) pt =
⎡
⎣log(rc

t−1)

log(rs
t−1)

log(ft)

⎤
⎦

a and B are a vector and matrix of param-
eters, and ut+1 is a vector of random
innovations with a variance-covariance
matrix equal to �. We assume multivariate
normal random innovations, which approx-
imately fits the data. We use a first-order
model because standard model selection
criteria (AIC and BIC) strongly preferred
a first-order model.1 No higher-order terms
showed statistical significance. This is fortu-
nate because each additional lag in the vector
autoregressive process would have added
three continuous state variables to the SDP,

1 These are standard model selection criteria.AIC is the“Akaike
information criterion” (Akaike 1974) and BIC is the “Bayesian
information criteria” (Schwarz 1978). Both criteria score models
based on the likelihood function minus a penalty for the number
of parameters, with BIC using a larger penalty than AIC.
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which would be prohibitively expensive from
a computational standpoint. (We describe the
data below.)

To calculate current profits, we simply
subtract costs from revenues. The only costs
we explicitly consider are nitrogen fertilizer
expenditures. While other costs and inputs
surely matter for field-level profits, nitrogen
fertilizer inputs are the largest single vari-
able expenditure that interacts strongly with
the corn-or-soybeans crop choice. For one,
nitrogen fertilizer is not typically applied to
soybeans but is almost universally applied
to corn. Also, there are strong substitution
possibilities between fertilizer applications
and rotational decisions. For example, corn
monoculture requires greater levels of fertil-
izer to achieve the same yield as compared
to corn following soybeans. Other inputs are
generally of lesser expense or are typically
similar regardless of whether corn or soy-
beans are planted. These other inputs include
phosphorus, potassium, labor, land, and cap-
ital utilization. The current profit function is
thus given by:

(4) π(it , nt|It , pt]) = ri
ta

i(It , nt) − itftnt .

The producer’s objective is to maximize the
expected present value of profit (4) over
an infinite time horizon (we also consider
shorter horizons), subject to the stochas-
tic evolution of state-level revenues and
fertilizer prices (2). We can write this infi-
nite horizon problem using the recursive
Bellman equation that relates the current
value function to the future value function:

V(It , pt) = max
itnt

E[π(it , nt|It , pt)

+ θV(It+1, pt+1)](5)

where V is the maximum expected present
value of the field over an infinite horizon of
optimal corn and soybean plantings. It is a
function of one discrete and three contin-
uous state variables: the crop history, past
unadjusted (state-level) soybean and corn
revenues, and current nitrogen fertilizer
prices. We assume these variables provide all
the information necessary to form expecta-
tions about end-of-season profit and the next
period’s discounted value function, where θ is
the discount factor.

To briefly formalize the option values
described in the introduction, consider a

second-order Taylor expansion around
expected prices conditional on past prices.
Because current profits are linear in prices,
this expansion simplifies to:

V(It , pt) ≈ max
itnt

π(it , nt|It , E[pt])
+ θV(It+1, E[pt+1])
+ θvec(Hp)

T vec(�p)︸ ︷︷ ︸
optionvalue

(6)

where Hp is the Hessian matrix of V with
respect to p, �p is the covariance matrix of
pt+1 conditional on information in time t, and
vec() vectorizes these matrices. This last term
embodies option values.2

Given parameters for the autoregressive
process of revenues, a functional form for
the agronomically based, revenue-adjustment
functions, ai(It , nt), and a discount factor, θ,
the dynamic optimization problem is fully
defined. The solution to the model is a policy
function that gives crop choice and nitrogen
fertilizer applications as a function of the
state variables: i(It , nt) and n(It , nt). These
policy functions are the choices that sat-
isfy the Bellman equation (5). Because the
value function does not have an analytical
representation, the model must be solved
numerically. We use value function iteration
to find these policy functions.

Solving the Model

Here we describe the numerical methods
used to solve the SDP models. For read-
ers uninterested in the technical details of
how these problems are solved, this section
may be of little interest and may be skipped
without significant loss of applied content.
Similarly, readers familiar with these tech-
niques are unlikely to learn new methods.
We provide these details for completeness
and to aid replication. Miranda and Fackler
(2002) provide an in-depth discussion of the
numerical methods we use. In addition, the
computer code we use to approximate func-
tions and perform quadrature to evaluate
integrals was written by Paul Fackler, which

2 Note that It+1is a deterministic function of It and crop choice
in i, and thus not random. However, subsequent values of It+iare
uncertain, and this uncertainty ultimately affects the shape of the
value function.
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can be downloaded from his website. Our
code is available upon request.

Each model we examine includes three or
four state variables. The three state variables
included in all models are crop history, which
embodies from one to three previous years
of plantings; the previous year’s average
revenue received per corn acre, rc

t−1; and the
previous year’s average revenue received per
soybean acre, rs

t−1. In models with just three
state variables, the fertilizer price is assumed
fixed. In other versions of the model, the cur-
rent year’s nitrogen fertilizer price, ft , is the
fourth state variable.

To solve the model numerically, we first
divide the state space into a discrete number
of points. The value function is approximated
at each discrete point, and we interpolate
values in-between points using a linear spline.
The vector s denotes the discrete evaluation
points and V(s) the associated points in the
value function. The vector s thus spans all
combinations of evaluation points across all
possible states.

Because crop choice is an integer that can
take only two values, 0 if soybean is planted
and 1 if corn is planted, approximating func-
tions that return continuous values are not
well suited to approximate optimal crop
choices. To account for this, we used a sim-
ple nearest-neighbor approach to simulate
optimal crop choices. Lagged soybean and
corn revenues are simulated for each grow-
ing season, and for each lagged soybean and
corn revenue pair, we find the nearest pair of
soybean and corn revenue nodes that were
used to find each decision rule. With the near-
est soybean and corn revenue and the crop
history state in hand, we set the current crop
choice equal to the crop choice that solved
the optimization problem underlying the
decision rule. This approximation method
works well when simulating crop choices
as long as the number of soybean and corn
revenue nodes is at least 20.

Computational cost is tied to the size of
s. In a model with 1 year of crop history, the
crop-choice state variable, It , may assume one
of two values: zero if soybeans were planted
in year t − 1 and one if corn was planted. In
the model with 2 years of crop history, It may
assume one of four values: one for continu-
ous soybean (SS), two for soybean followed
by corn (SC), three for continuous corn (CC),
and four for corn followed by soybean (CS).
Similarly, in the model with 3 years of crop

history, the crop-choice state variable may
assume one of eight feasible crop histories.

We divide the three continuous state vari-
ables (the vector p) into 20 equally spaced
evaluation points that range between $100
and $1,600 per acre, $100 and $1,700 per acre,
and $0.05 and $1.60 per pound, for state-
level corn revenues, soybean revenues, and
fertilizer prices, respectively. These ranges
are somewhat larger than those observed
in the data (described below). When the
crop history includes a single year, the previ-
ous year’s crop choice can assume only two
values. Multiplying out the set of feasible
evaluation points, we have a minimum of
2 × 20 × 20 × 20 = 16,000 evaluation points
in vector s. The number of evaluation points
then doubles for each additional year of crop
history considered.

Increasing the number of evaluation points
for the continuous state variables involves a
delicate balance between accuracy and com-
putational expense. If we choose 30 points
rather than 20 for each of the three contin-
uous state variables, the dimension of the
state vector increases from 16,000 to 54,000
(2 × 303) for a single-year crop history. If we
solve the model using 2 years of history, then
we need to allocate 4 evaluation points for
the first state variable, which again doubles
the memory requirements. Though expensive,
in some applications the number of evalu-
ation points can significantly influence how
well the overall model approximates the
true solution.3 Our computational constraint
makes it impossible to solve models with
more than 20 evaluation points when we use
all four state variables.4 If we fix fertilizer

3 For example, a recent article by Cafiero et al. (2009) recon-
ciled a long-standing puzzle about the amount of autocorrelation
in storable commodity prices by simply increasing the number of
evaluation points in the tochastic dynamic programming model.
Approximating the inverse demand function with just 20 evalu-
ation points smoothes over a critical kink in the policy function
where stockout occurs. This seemingly minor computational issue
leads to a spurious implication that commodity prices should
have little autocorrelation (Deaton and Laroque 1992, 1996).
In a model with 1,000 evaluation points, the numerical solution
accurately recovers the kink in the demand curve and predicts
commodity prices with a high degree of autocorrelation, which
is what we observe in commodity price data. Since we do not
expect there to be non-smooth kinks in our policy functions
(except for crop choice, which is explicitly discrete), the relative
coarseness of our policy function approximation should be a less
severe problem.

4 To solve the largest model, we used a Linux workstation
with a Xeon E5, 3.1Ghz processor with 16 cores, 128G of RAM,
running a multicore package of Matlab. It required one to two
days for a single model to converge.
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prices and thereby reduce the number of con-
tinuous state variables to two, we are able to
increase the number of evaluation points to
30, but we found this made little difference.

The dynamic program is solved recursively.
It begins by solving the terminal condition of
the dynamic programming model, which is a
static expected profit function (equation [4])
conditional on each of the 16,000+ evalua-
tion points in the state vector s. This decision
involves finding the optimal crop to plant
and, if corn is planted, how much nitrogen
fertilizer to apply. In this initial step, the
longer-run consequences of these decisions
are ignored. We store the expected profit-
maximizing crop choices and per-acre profit
levels and then compute the coefficients of
a four-dimensional linear spline so that we
may evaluate expected profits in-between
the evaluation points. This spline function
is the first estimate of the value function
(or terminal condition) which we denote
VT (I, p).

The next step involves substituting the
first estimate of the value function into the
right-hand side of the Bellman equation (5)
and solving the two-period problem: max-
imize current profits plus the discounted
expected value of VT (I, p). This optimization
depends on the current state, (IT−1, pT−1).
To trace out the whole value function, we
therefore perform this optimization for each
evaluation point in the state vector s. Opti-
mization requires that we integrate VT (I, p)
over the probability distribution of future
states, conditional on each sj ∈ s. While crop
choice affects the future state space in a
deterministic way, the distribution of the vec-
tor pT conditional on sj is given by the vector
autoregressive process described above (2)
and its assumed trivariate normal distribution
of innovations, which have mean zero and
an estimated covariance matrix � (reported
below).5

Having stored optimal values and optimal
choices for each sj ∈ s), we again compute
the coefficients of a four-dimensional linear
spline so that we may approximate expected
values in-between the evaluation points in s.
This spline function gives the next iteration’s

5 In solving the model, the error terms and weights are drawn
following the multivariate normal distribution using a Gaussian
quadrature rule (Miranda and Fackler 2002). We provide evidence
in an online appendix to show that the normal-distribution
assumption appears reasonable in this case.

estimate of the value function, which we
denote VT−1(I, p).

By substituting VT−1(I, p) into the right-
hand side of the Bellman equation, we can
repeat this process until either a given plan-
ning horizon has been considered or until
the value function converges to very similar
values between iterations. Full convergence
satisfies the Bellman equation and gives the
solution to the infinite-horizon problem.
We therefore repeat the procedure until the
maximum absolute value of the change in the
value function at each state vector was less
than $1e−6, which typically occurred around
350 iterations. We also considered 1- and
2-year horizon problems.

Data and Parameter Estimates

The main parameters are the agronomic rev-
enue adjustment functions ai(I, nt) and the
matrix of autoregressive coefficients B′s from
equation (2). Estimation of the adjustment
cost function comes from analysis of experi-
mental plot data from northeastern Iowa that
was generously provided by David Hennessy.
Estimation of the autoregressive coefficients
comes from analysis of historical data on
Iowa corn and soybean prices and yields that
are publicly available from USDA’s National
Agricultural Statistical Service (NASS) and
from USDA data on nitrogen fertilizer prices.

Revenue Adjustment Functions

The experimental plots are composed of
seven large plots with 12 subplots in each
large plot. One of the four fertilizer appli-
cation rates (0, 80, 160, and 240 lbs/acre) are
applied and held constant over time for a
specific subplot.6 Nitrogen fertilizer was only
applied to corn, and the effect on subsequent
soybean yields turns out to be statistically
small, as we show below.

The data from the experimental plots,
including yields and controlled fertilizer
usage, are summarized in table 1. Note that
fertilizer application rates are balanced via
the experimental design across rotation

6 The fact that fertilizer application rates are held constant over
time in the experimental plot data is one reason why our adjust-
ment function does not include past application rates. Another
reason is computational feasibility: including past application rates
in the production function would add yet another state variable
to the dynamic programming model.
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Table 1. Summary Statistics from Experimental Field Plots

(C ≡ Corn and S ≡ Soybeans)

Past Plantings: C-C-C C-C-S C-S-C C-S-S S-C-C S-C-S S-S-C S-S-S
(1) (2) (3) (4) (5) (6) (7) (8)

Corn Yields (bushels/acre)
Mean 106.9 105.5 107.9 na 135.5 137.6 na na
SD 42.8 42.0 43.8 na 36.2 36.6 na na
N 300 300 600 na 600 300 na na

Nitrogen Applications on Corn (current or previous, lbs./acre)
Mean 120.0 120.0 120.0 na 120.0 120.0 na na
SD 89.5 89.5 89.5 na 89.5 89.5 na na
N 300 300 600 na 600 300 na na

Soybean Yields (bushels/acre)
Mean 49.8 48.3 45.2 na na na na 38.5
SD 11.5 11.0 11.4 na na na na 9.8
N 300 300 300 na na na na 300

Note: The table reports average yields and nitrogen application rates for different rotations in the experimental data. Column headings give different
rotation histories. For example, C-S-S means corn was planted in the immediately preceding year and soybeans were planted both years preceding
the last. Not all feasible rotation histories are present in the data, as indicated by “na.” Nitrogen fertilizer was not applied to soybeans, and the
level of fertilizer applied on corn rotated with soybeans had no statistically significant effect on yield.

treatments, so that differences in average
yields, conditional on sampling error, can be
interpreted as causal.

The data show that corn yields following
soybean plantings average about 28 percent
greater than corn yields following corn plant-
ings.7 Planting decisions in years prior to
the immediately preceding year appear to
have little influence on yield. For soybeans,
yields following corn plantings average about
25 percent greater than yields cultivated in
soybean monoculture. In comparison to corn,
average soybean yields are more sensitive
to plantings 2 and 3 years past. The greater
the frequency and more recent prior corn
plantings, the greater the current soybean
yield. Average yield for soybeans following 3
years of corn is about 9 percent greater than
average yield in continuous corn-soybean
rotation.

We use regression analysis and the data
summarized in table 2 to calibrate the adjust-
ment cost functions ai(I, n). We report several
specifications so readers can judge the trade-
off between parsimony and goodness of fit.
Using a longer crop history improves the
fit slightly, but accounting for it requires
a larger state space in our dynamic pro-
gramming model. We also experiment with

7 This figure comes from comparing the weighted average of
columns 1–3 relative to the weighted average of columns 5–6,
the weights equal to the square root of N.

different kinds of interactions between fer-
tilizer applications and rotation history. The
regressions show that the fit improves little
after an account of the previous year’s plant-
ings and fertilizer use. We also find a strong
interaction effect between past plantings and
nitrogen use for corn: the marginal produc-
tivity of fertilizer is uniformly greater when
corn is planted after corn rather than after
soybeans.

The regression models have the form:

log(Ypt) = +at + Iptβ + γ1 log(np + 1)

+ γ2log2
(np + 1) + εpt(7)

where Ypt is yield on plot p in year t, at is a
year fixed effect, np is nitrogen application
rate in pounds per acre (fixed across years),
Ipt is a vector of 0–1 dummy variables indicat-
ing the rotation history, and εpt is the model
error. Note that while the experimental data
include only four discrete levels of nitrogen
application, we treat it as a continuous vari-
able in the regression analysis. This treatment
allows us to infer yield and revenue effects
over a continuum of application levels in our
dynamic programming model. Separate mod-
els were estimated for corn and soybeans.
For soybean yields, nitrogen is not applied
and the applicable terms in equation (7) are
dropped.

Because the regressions account for rota-
tion history using dummy variables, and

 at V
irginia T

ech on N
ovem

ber 18, 2015
http://ajae.oxfordjournals.org/

D
ow

nloaded from
 

http://ajae.oxfordjournals.org/


Livingston, Roberts, and Zhang Crop Rotations under Uncertainty 863

Table 2. Regressions Predicting Crop Yield Conditional on Planting History and Fertilizer
Use

Log Corn Yield Log Soybean Yield

Crop History: 1 2 3 1 2 3 3
(1) (2) (3) (4) (5) (6) (7)

Estimate/(Standard Error)
C, CC, or CCC 3.79 3.79 3.79 3.72 3.75 3.77 3.77

(0.02) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02)
CCS 3.78 3.74 3.74

(0.03) (0.02) (0.02)
CS or CSC 3.80 3.80 3.67 3.67 3.67

(0.03) (0.03) (0.02) (0.02) (0.02)
S, SC, or SCC 4.47 4.47 4.46 3.50 na na na

(0.03) (0.03) (0.03) (0.02)
SCS 4.48 na na

(0.03)
SS or SSS na na 3.50 3.50 3.48

(0.02) (0.02)

log(n + 1) × C 0.10 0.10 0.10 6.97#

(0.02) (0.02) (0.02) (10.9)

log2(n + 1) × C 14.8# 14.8# 14.8# −1.30#

(3.14) (3.14) (3.14) (2.08)

log(n + 1) × S 0.07 0.07 0.07 −6.10#

(0.02) (0.02) (0.02) (18.9)

log2(n + 1) × C 1.37# 1.37# 1.37# 2.47#

(3.62) (3.62) (3.62) (3.61)
Year fixed effects Yes Yes Yes Yes Yes Yes Yes
Sample size 2100 2100 2100 1200 1200 1200 1200
Adjusted R2 0.81 0.81 0.81 0.82 0.84 0.84 0.84

Note: (#) indicates numbers multiplied by 1,000. Crop history indicates how many years of past plantings used in the regression. For one year, the
history is either C or S; for two years, the history is CC, CS, SC or SS; for three years, the history is indicated by a three-letter sequence. Histories
“SSC” and “CSS” are not present in the data. Missing rotations are not shown in the table (e.g., SSC) or are indicated by “na” if the rotation exists
for corn but not for soybeans. n represents fertilizer applications, in pounds per acre, and takes on one of four distinct values: 0, 80, 160, and 240.
We use n + 1 to make the log operator well defined at n = 0. log(n + 1) × S measures the effect of the nitrogen application rate on corn when soy-
beans were planted in the last period. Although nitrogen was not applied to soybeans, column 7 investigates how nitrogen application rates on corn
rotated with soybeans affect soybean yield.

because some feasible crop histories are not
present in the data, we must interpolate to
make yield predictions for the unobserved
histories. We do this by combining regression
coefficients from similar nonmissing histories.
For example, an SSC history is not in our
data of soybean yields, but SSS is in our data,
as are CCC and CCS. We therefore approx-
imate the soybean yield for SSC with that
for SSS, plus the difference between yields
for CCC and CCS, because this difference
is akin to the difference between SSC and
SSS. We make similar interpolations for all
missing rotation histories. Results from these
interpolations are shown in table 3. Holding
fertilizer applications fixed at 130 pounds
for corn yields, and taking the average of
year fixed effects, the table reports average
predicted yield for each feasible rotation
history.

To parameterize the revenue adjustment
functions (ai(I, n)) from the yield regressions,
we divide the regression-predicted yield (with
necessary interpolations described above)
by the average state-level yield observed
in Iowa, which is 127.96 bushels per acre of
corn and 31.36 bushes per acre (see table 3)
of soybeans in the 1-year history case. Thus,
assuming farmers optimize, the typical value
of the adjustment function should be approx-
imately 1. The resulting estimated adjustment
functions for corn are shown in figure 1.

State-Level Revenues and Fertilizer Prices

We use a vector autoregressive model to
characterize the stochastic evolution of
state-level revenues per acre and fertil-
izer prices, which are key state variables
in the stochastic dynamic programming

 at V
irginia T

ech on N
ovem

ber 18, 2015
http://ajae.oxfordjournals.org/

D
ow

nloaded from
 

http://ajae.oxfordjournals.org/


864 April 2015 Amer. J. Agr. Econ.

Table 3. Yield Predictions for Different Rotation Histories.

History: 1 Year 2 Years 3 Years

Current Crop: S C S C S C

Rotation
S, SS, or SSS 33.4 131.7 33.4 132.6 33.4∗ 133.7∗
SSC 34.8 130.7∗
SC or SCS 37.0∗ 131.7 37.7∗ 133.0
SCC 39.0∗ 131.1
C, CS, or CSS 41.8 106.8 39.4 107.3 40.7∗ 106.9∗
CSC 39.4 107.3
CC or CCS 43.0 106.4 43.6 106.2
CCC 42.3 106.6

Note: The table reports average predicted yields based on the regression models reported in table 2, fixing fertilizer at 130 pounds per acre and
using the average of year fixed effects. A (*) indicates a rotation history that is missing in the data and a prediction that has therefore been
interpolated. Interpolation is done by combining similar non-missing rotations. For example, a SSC history is not in our data of soybean yields, but
SSS is in our data. We therefore approximate the soybean yield for SSC with that for SSS, plus the difference in yields for CCC and CCS.

50 100 150 200 250

0.6

1

50 100 150 200 250

0.6

1

Fertilizer Use ( lbs/acre )

R
ev

en
ue

 A
dj

us
tm

en
t 

F
un

ct
io

n 
( 

ac ,
 1

 =
 1

27
.9

6 
bu

sh
el

s/
ac

re
 )

Soybean planted last and Corn
2 years ago

Corn planted last and
Soybean 2 years ago

Corn planted
last two years

Soybean planted last year

(mean +/   2 S.E.)

Soybean planted last two year

(mean +/   2 S.E.)

Corn planted last year
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Figure 2. Historical Iowa corn and soybean revenues and fertilizer prices

Table 4. Vector Autoregression Models of State-Level Revenues

Corn Revenue Soybean Revenue
Log rc

t Log rs
t

(1) (2) (1) (2)

Estimates/(Standard Errors)
Intercept 1.09 1.21 0.75 0.70

(0.52) (0.54) (0.48) (0.51)
log(rc

t−1) 0.48 −0.31 0.16 −0.14
(0.19) (0.22) (0.17) (0.20)

log(rc
t−2) 0.61 0.20

(0.21) (0.19)
log(rs

t−1) 0.35 0.22 0.71 0.22
(0.19) (0.22) (0.17) (0.21)

log(rs
t−2) 0.30 0.59

(0.22) (0.21)
Sample size 49 48 49 48
Adjusted R2 0.66 0.71 0.71 0.71

Variance-Covariance of Innovations (AR1)
uc us

uc 3.61 2.34
us 2.34 3.13

Note: The table reports estimates of first-order and second-order vector regressive models. The first-order coefficients (columns 1 and 3) comprise
our estimate of the matrix B in equation (2) and the variance-covariance matrix comprise the estimate of �, all for the case when fertilizer price is
assumed fixed. The models were estimated using ordinary least squares.

model. The revenue data come from USDA’s
National Agricultural Statistics Service
for the state of Iowa and are adjusted to
year 2000 dollars using the consumer price
index. The fertilizer price data were obtained
from USDA’s Economic Research Service

(http://www.ers.usda.gov/data/fertilizerUse/,
table 7).These data are plotted in figure 2.

In tables 4 and 5, we report results from
first- and second-order autoregressive mod-
els. The first table reports regression models
without fertilizer prices, which are used for
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Table 5. Vector Autoregression Models of State-Level Revenues and Fertilizer Prices

Corn Revenue Soybeans Revenue Fertilizer Price
Log rc

t Log rs
t ft+1

(1) (2) (3) (4) (5) (6)

Estimates/(Standard Errors)
Intercept 1.71 2.22 1.65 1.84 -2.21 -2.30

(0.76) (0.92) (0.69) (0.88) (0.60) (0.74)
log(rc

t−1) 0.42 -0.39 0.07 -0.23 0.30 -0.03
(0.20) (0.21) (0.18) (0.20) (0.16) (0.17)

log(rc
t−2) 0.46 0.11 0.34

(0.22) (0.21) (0.17)
log(rs

t−1) 0.33 0.19 0.67 0.21 0.14 -0.13
(0.19) (0.22) (0.17) (0.21) (0.21) (0.17)

log(rs
t−2) 0.42 0.64 0.14

(0.23) (0.22) (0.19)
log(ft) 0.11 -0.23 0.16 -0.07 0.68 -0.07

(0.10) (0.17) (0.09) (0.16) (0.08) (0.14)
log(ft−1) 0.37 0.25 0.72

(0.20) (0.19) (0.16)
Sample size 49 48 49 48 49 48
Adjusted R2 0.66 0.68 0.73 0.72 0.82 0.82

Variance-Covariance Matrix of Innovations (AR1)
uc us uf

uc 3.51 2.20 0.60
us 2.20 2.92 −0.15
uf 0.60 −0.15 2.21

Note: The table reports estimates of first-order and second-order vector regressive models of fertilizer prices and state-level corn and soybean rev-
enues per acre. The first-order coefficients (columns 1, 3, and 5) comprise the estimate of the matrix B in equation 2, and the variance-covariance
matrix gives the estimate of �. The models were estimated using OLS.

models with fixed fertilizer price.8 The second
table reports models with fertilizer prices.
Although a second-order model would be
computationally infeasible if used in our
dynamic program, we report the regression
results to show that earlier lags have little
or no predictive power, which suggests the
first-order model is sufficient. AIC and BIC
selection criteria also prefer a first-order pro-
cess. We chose the first-order model for these
reasons plus the fact that adding additional
continuous state variables greatly increases
computational expense. One hundred years
of simulated revenues and fertilizer prices,
based on the first-order model in table 5, are
plotted in the online appendix. The online
appendix also reports various residual plots
and Kolmolgorov-Smirnoff test statistics,
which fail to reject the null hypothesis that
each error is distributed normal.

8 We use models with fixed fertilizer price to explore the sensi-
tivity of results to the number of grid points used to approximate
the value function.

National Resources Inventory

We use data from National Resources Inven-
tory (NRI), a survey administered by USDA’s
Natural Resources Conservation Service
(NRCS), to obtain data on actual rotations
for comparison with model predictions. The
NRI is a survey that repeatedly samples
approximately a million points across the
United States in order to track parcel-specific
land use change. The key advantages of the
NRI in comparison to other surveys is that
land units rather than farms are sampled,
and the land units are fixed over time. Until
1997, the survey was conducted every 5 years;
however, on cultivated cropland, the survey
also obtained crop choices for the 4 years
prior to each sampled year. Combining sur-
veys from 1982, 1987, 1992, and 1997 gives
a panel of crop choices running from 1979
through 1997 with only the years 1983, 1988,
and 1993 missing. Since 1997 the survey has
become annual. Although the point data are
not publicly available since 1997, we were
able to analyze these data on site at USDA’s
Economic Research Service.
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For our analysis, we limit the data set to
6,513 parcels in Iowa from 1979 to 2007 that
planted either corn or soybeans. Observa-
tions are not available for 1983, 1988, and
1993. These data are summarized in the
online appendix table 2. The table shows the
frequency of every possible 3-year rotation
in available years since 1981 (with prior rota-
tions stretching back to 1979). Looking over
time, there are a several interesting features.
The frequency of corn ranges from 50%–60%
of sampled parcels. Corn and soybeans are
planted in rotation (corn after soybean or
vice versa) on 67%–91% of the parcels. Corn
is planted after corn from 3% to 15%, and
the frequency of soybeans after soybeans
ranges from just 0.1% to 1.6%.

It is also interesting that, beginning in 1996,
the frequency of corn after corn dropped
sharply. This year coincides with the Fed-
eral Agricultural Improvement and Reform
Act (FAIR, colloquially called the Freedom
to Farm Act). This bill largely “decoupled”
government payments from farmer planting
decisions. Since, prior to this Act, payments
depended to some extent on how much corn
farmers planted relative to their historical
baseline, the policy change likely encouraged
greater efficiency via greater crop rotation.
Also, corn-soybean rotations were least
prevalent, and corn after corn most preva-
lent, in 1987, which happened to be a year
of remarkably low commodity prices. This
low rotation incidence also might have been
policy related, since pre-Act payments were
connected to the amount by which market
prices fell below established target prices.
Although we do not formally address these
policy considerations in this article, they are
useful to keep in mind when considering its
predictive accuracy.

Finally, it is interesting to note the marked
increase in corn-after-corn plantings in 2007,
when corn prices climbed sharply with the
rapid rise of ethanol production.

Results

Scenarios Considered

Here we report rotation decisions, fertilizer
applications, average profits, and profit vari-
ability under a series of different modeling
assumptions and decision rules based on four
planning horizons:

(i) 1-Year Horizon: A farmer that optimizes
current expected profits conditional
on past plantings (e.g., a cash renter
who believes he or she is unlikely to be
farming the same parcel next year).

(ii) 2-Year Horizon: A farmer that maxi-
mizes the expected sum of current and
subsequent year’s profits conditional on
past plantings (e.g., a cash renter who
has a 2-year contract or at least believes
there is a strong possibility that he or she
will be farming the same parcel for at
least 2 years).

(iii) Infinite Horizon: A fully optimizing
farmer that maximizes the present dis-
counted value over an infinite horizon
(e.g., a landowner who is farming on his
or her own land).

(iv) Always Rotate: A rule-of-thumb farmer
that rotates corn after soybeans and
vice versa, regardless of prices, but
applies fertilizer optimally conditional
on planting decisions.

Comparing results over these different
objectives allows us to evaluate the economic
costs associated with less-than-optimal or
rule-of-thumb decision criteria. These cost
margins are an important consideration
because real option values, which could be
implicit in rotational decisions of forward-
looking farmers, tend to be small in size
even when they have a large influence on
decisions. It would not be surprising to find
farmers using simpler decision rules. Thus,
in addition to simulated outcomes, we also
examine how well the models predict actual
plot-level decisions.

We also consider optimal decisions of
a “risk-averse” farmer that maximize the
present value of log profits rather than
raw profits.9 Our goal is simply to examine
whether decisions are particularly sensitive
to tastes about profit variability. Because
farm-level profits will sum outcomes across
many parcels of land, and because consump-
tion is likely to be much smoother than
profits, maximizing the expected present
value of log profit for a single acre of
production implicitly assumes both risk

9 For these specifications, we add $350 to profits (u = ln(350 +
π)) to ensure we never take the log of a negative number. We put
“risk-averse” in quotes because using the natural log of profit is
a crude approximation of diminishing marginal utility of wealth
or consumption.
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aversion and large degree uninsurable
risk.

Next, we compare solutions with observed
price and revenue processes with one in
which corn plantings receive an additional
premium of $20 acre. This premium approx-
imately equals the premium received by
farmers selling corn to nearby ethanol plants,
which now consume a significant share of
Iowa corn production.10 This also gives some
indication of planting response to a perma-
nent change in relative prices of corn relative
to soybeans.

All of the above assumptions are consid-
ered in models with one, two, and three-year
histories, but we report results for 3-year
histories in the online appendix. For each
objective and history length, we consider
models with fertilizer price fixed at $0.42/lb
and a model in which fertilizer price evolves
stochastically according to the vector-auto
regression model reported above. We chose
a fixed fertilizer price of $0.42/lb because it
is close to the recent high prices of nitrogen,
and it best predicts actual planting deci-
sions reported in the National Resources
Inventory. For the model with a fixed
fertilizer price, we have one less continu-
ous state variable, which greatly reduces
computational expense. These different
modeling strategies are used to evaluate the
robustness of predicted choices to various
modeling assumptions.

After solving the infinite-horizon and
shorter-horizon objectives, we simulate 100
years of the estimated stochastic generating
process of prices and revenues and evaluate
decisions and profits for each solved model.
We then replicate this 100-year simulation
1,000 times using the same pseudo-random
outcomes across all models so that differ-
ences across models cannot be attributed
to sampling error. For each simulation we
evaluate average profits, the standard devi-
ation of profits, the present value of profits,
average fertilizer applied to corn, the average
frequency of corn plantings, and the average
frequency of corn after corn. For each mea-
sure, we report the average over the 1,000
simulations.

10 McNew and Griffith (2005) estimate a corn price premium
of 12.5 cents per bushel near ethanol plants, which amounts to
$20/acre if yield is expected to be 160 bushels per acre, which is
typical in recent years in Iowa.

Policy Functions

Figure 3 shows solved policy functions for
risk-neutral objectives with fixed fertilizer
prices, 1 year of planting history, and no
corn price premium. Each line in figure 3
represents a threshold for planting corn or
soybeans under a given planning horizon
(naive, 2 year, or infinite) and planting his-
tory (C last year or S last year). If a revenue
pair falls below the curve, the policy function
indicates soybeans should be planted; if a
revenue pair falls above the curve, the policy
function indicates corn should be planted.
The points on each line indicate node loca-
tions. Dots indicate actual historical revenue
pairs.

There are three notable features about the
threshold curves: First, for the most part, the
longer the planning horizon, the wider the
region wherein it is optimal to rotate (plant
corn after soybeans and vice versa), which
reflects the real option values embodied in
rotations. The exception (discussed below) is
that corn after corn is less likely for a 2-year
planning horizon than an infinite horizon.
Second, nearly all observed revenue pairs
lie between the threshold curves, regardless
of the planning horizon. The one exception
being the year 1971, when only the naive
farmer plants corn after corn. Third, observed
historical revenue pairs generally appear
closer to the corn-soybean threshold follow-
ing corn as compared to following soybeans,
especially for shorter planning horizons. Thus,
while our model would predict the nearly
identical land use choices (i.e., always rotate)
for all planning horizons, the model suggests
that corn after corn plantings may be more
likely than soybean after soybean plantings.
Note that we indicate revenue pairs from
a few recent years so they can be placed in
historical context.

We have only illustrated policy functions
with 1 year of planting history and fixed fer-
tilizer prices. Plots showing policy functions
for 2- and 3-year histories require multiple
panels for clear presentation, so we have
placed these in an online appendix. Policy
functions for 2- and 3-year histories show
patterns similar in spirit to figure 3, but the
curves tend to shift up or down depending
on earlier crop history. The more corn was
planted in years prior to the previous one,
the more the threshold curves shift up favor-
ing soybeans, and vice versa. These patterns
make sense given documented rotational
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Figure 3. Threshold curves for optimal corn and soybean plantings conditional on past
state-level revenues

Notes: The figure illustrates solved policy functions for risk-neutral objectives with fixed fertilizer prices, one-year of planting history, and no corn
price premium. Each line gives an threshold curve for planting corn or soybeans under a given planning horizon (naive or infinite) and planting
history (C last year or S last year). If a revenue pair falls below the threshold curve, the policy function indicates soybeans should be planted; if a
revenue pair falls above the threshold curve, the policy function indicates corn should be planted. The points on each line indicate node locations.
Dots indicate historical revenue pairs. Threshold curves for models using longer crop histories are shown in an online appendix.

benefits, and suggest monoculture, while
unlikely, is even less likely to persist. Interest-
ingly, the model with 3-year rotations show
that if past rotations were relatively balanced,
the threshold curves move slightly toward
the center relative to the single-year case.11

Thus, all else the same, more rotation in past
planting increases the likelihood of future
monoculture, a pattern that makes intuitive
sense.

It is interesting that the 2-year planning
horizon is less likely to engage in mono-
culture than the infinite planning horizon.
This pattern likely results from the nature of
revenue autocorrelation. Corn and soybean
price movements are strongly correlated, as
indicated by the autocorrelations and covari-
ance matrix in table 4. But while revenues
are strongly autcorrelated, they are mean
reverting within a few years (the sum of the
lagged coefficients are 0.83 and 0.87 for corn
and soybean, respectively, while innovations

11 To ease comparison between one-year histories and two- and
three-year histories, we plot policy functions for the single-year
case in the background of the two- and three-year figures (again,
see the online appendix).

have a correlation of 0.70). As a result, the
option value of preserving land disposition
for future monoculture is likely to be greatest
for the subsequent year, since in the long run
the relative benefits of monoculture revert
to the mean. Corn monoculture is thus most
likely when current profits are maximized,
least likely with a two-year horizon, and in
between with an infinite horizon. This pattern
becomes more exaggerated with longer plant-
ing history, mainly because corn monoculture
favors subsequent soybean yields, an issue
discussed in more detail below.

The next section considers simulations of
these models as well as those with stochastic
fertilizer prices. Policy functions for mod-
els with stochastic fertilizer choice have too
many dimensions for graphical presentation.
And because policy functions for risk-averse
objectives look nearly identical to those for
the risk-neutral objective, we do not display
them.

Simulation Results

Results for models with a single year of
crop history (tables 6 and 7) show similar
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Table 6. Simulation Results for Fixed Fertilizer Price and One-Year Crop History

PV Percentage Mean Profit Fertilizer

Objective Annuity Corn Corn-Corn Corn Soybean Mean Std

($/acre) (%) ($/acre) (lbs/acre)

Risk neutral, no premium on corn
One-Year 473.87 52.28 5.09 462.77 418.42 135.32 29.49
Two-Year 477.46 50.00 0.00 464.30 422.48 128.94 20.39
Infinite 477.47 50.01 0.10 464.36 422.34 129.07 20.64
Always Rotate 477.45 50.00 0.00 464.30 422.49 128.93 20.38

Risk neutral, $20 premium on corn
One-Year 481.80 56.58 13.73 474.04 417.23 147.53 33.55
Two-Year 487.58 50.00 0.01 484.98 422.50 132.45 18.61
Infinite 487.60 50.03 0.22 485.32 422.16 132.71 19.18
Always Rotate 487.58 50.00 0.00 485.02 422.49 132.43 18.58

Risk averse, no premium on corn
One-Year 474.24 51.62 3.79 464.45 418.19 132.12 28.31
Two-Year 477.45 50.00 0.00 464.29 422.48 127.23 20.61
Infinite 477.46 50.00 0.06 464.27 422.42 127.32 20.77
Always Rotate 477.45 50.00 0.00 464.29 422.49 127.22 20.61

Risk averse, $20 premium on corn
One-Year 482.87 54.84 10.24 480.62 414.05 142.83 32.93
Two-Year 487.58 50.00 0.01 484.97 422.48 130.92 18.79
Infinite 487.59 50.03 0.22 485.32 422.16 131.18 19.35
Always Rotate 487.58 50.00 0.00 485.01 422.49 130.89 18.75

Note: The table summarizes results from 1,000 replicates of 100-year simulations, wherein a one-acre field is managed using each of four different
management strategies: (1) Maximization of current profits conditional on the state variables. (2) Maximization of the current plus discounted
subsequent year’s profits. (3) Maximization of the expected net present value using the solution to the full, infinite-horizon SDP with discount
factor β = 0.95. (4) Maximization of current profits subject to always rotating. All values are means taken across the 1,000 series. PV Annuity
gives the annual perpetual annuity which, if discounted, results in the same expected present value as the objective. Risk-neutral farmers maximize
the expected present value of profits and risk-averse farmers maximize the expected present value of log profits. The $20 premium accords with
evidence on the price premium that corn receives near ethanol plants. All simulations assume the same stochastic evolution of state variables (the
first-order autoregressive model reported in table 5 and use the same sequence of pseudo random draws in order to minimize differences stemming
from chance error.

decisions across modeling assumptions. In
the great majority of states, it is optimal to
rotate regardless of the planning horizon,
or whether farmers are risk averse, fertilizer
prices are stochastic, or corn plantings receive
a $20 per acre premium. This result is more
striking when only one year of crop history is
considered (table 6). In this case, excepting
very rare circumstances, only naive current-
year maximizing farmers ever plant corn
after corn regardless of prices or state-level
revenues. Even naive one-year maximiz-
ers plant corn 51.6% to 62.0% of the time,
depending on the corn premium, risk aver-
sion, and whether fertilizer prices are fixed or
stochastic.

Fertilizer application rates on corn vary
from an average of 129 to 161 pounds per
acre, depending on modeling assumptions.
Differences derive mainly from the incidence
of corn monoculture, with higher application
rates the greater the frequency of corn after

corn. Fertilizer application rates also vary
with expected corn prices conditional on corn
being planted. This conditional price expec-
tation also tends to be higher the greater the
incidence of corn after corn. This pattern
highlights the substitutability of rotation for
fertilizer applications.

Present values are slightly higher and fer-
tilizer applications and corn plantings slightly
lower with a fixed fertilizer price as opposed
to stochastic fertilizer prices. Corn plantings
increase for naive farmers because occa-
sionally low fertilizer prices reduce the cost
of monoculture. But since fertilizer prices
are positively correlated with corn prices,
these opportunities do not happen often, and
profits from the highest revenue years are
diminished from typically higher fertilizer
costs in those years. Fertilizer applications
are likely higher with stochastic fertilizer
prices because corn monoculture is more
frequent.
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Table 7. Simulation Results for Stochastic Fertilizer Price and One-Year Crop History

PV Percentage Mean Profit Fertilizer

Objective Annuity Corn Corn-Corn Corn Soybean Mean Std

($/acre) (%) ($/acre) (lbs/acre)

Risk neutral, no premium on corn
One-Year 463.73 54.41 9.37 441.76 420.01 141.19 30.90
Two-Year 466.78 50.00 0.05 453.07 414.82 130.08 17.03
Infinite 466.80 50.04 0.28 452.92 414.92 130.39 17.64
Always Rotate 466.78 50.00 0.00 453.15 414.75 130.01 16.85

Risk neutral, $20 premium on corn
One-Year 471.16 61.96 24.54 443.58 431.65 157.80 35.99
Two-Year 476.88 50.02 0.14 473.64 414.97 133.44 16.53
Infinite 476.86 50.43 1.26 471.98 415.87 134.87 19.27
Always Rotate 476.88 50.00 0.00 473.91 414.75 133.26 16.14

Risk averse, no premium on corn
One-Year 464.11 52.92 6.37 446.88 415.90 136.48 29.00
Two-Year 466.77 50.00 0.05 453.06 414.82 128.39 17.39
Infinite 466.76 50.08 0.42 452.40 415.25 128.88 18.30
Always Rotate 466.78 50.00 0.00 453.14 414.75 128.31 17.21

Risk averse, $20 premium on corn
One-Year 472.64 58.04 16.66 454.80 421.49 150.10 34.76
Two-Year 476.87 50.15 0.50 472.79 415.54 132.37 17.70
Infinite 476.85 50.46 1.32 471.90 415.87 133.45 19.76
Always Rotate 476.87 50.00 0.00 473.90 414.75 131.73 16.47

Note: The table summarizes results from 1,000 replicates of 100-year simulations, wherein a one-acre field is managed using each of four different
management strategies: (1) Maximization of current profits conditional on the state variables. (2) Maximization of the current plus discounted
subsequent year’s profits. (3) Maximization of the expected net present value using the solution to the full, infinite-horizon SDP with discount
factor β = 0.95. (4) Maximization of current profits subject to always rotating. All values are means taken across the 1,000 series. PV Annuity
gives the annual perpetual annuity which, if discounted, results in the same expected present value as the objective. Risk-neutral farmers maximize
the expected present value of profits and risk-averse farmers maximize the expected present value of log profits. The $20 premium accords with
evidence on the price premium that corn receives near ethanol plants. All simulations assume the same stochastic evolution of state variables (the
first-order autoregressive model reported in table 5 and use the same sequence of pseudo random draws in order to minimize differences stemming
from chance error.

Interestingly, there is almost no economic
cost for farmers having planning horizons
of just two years of using the always-rotate
rule, amounting to an annuity value of one
to three cents per acre per year as compared
to the infinite-horizon case. Even farmers
who maximize only current-year profits only
sacrifice the equivalent of $3–$5 per acre
annually relative to the optimal decision rule.

When we consider models with a two-year
crop history, larger differences in planting
decisions emerge (tables 8 and 9). Interest-
ingly, naive farmers now fare better than
farmers with a two-year planning horizon and
farmers that always rotate, and have decision
rules that appear remarkably similar to the
infinite-horizon case. Naive farmers plant
corn 54.6%–63.2% of the time while infinite-
horizon farmers plant corn 53.6%–58.4%
of the time depending on other model-
ing assumptions; two-year horizon farmers
always plant corn less than 50% of the time.

We did not expect this result. Plantings prior
to the last year have no significant influence
on corn yields. The most logical explanation
comes from the additional boost soybean
yields receive (about 8%) after two years
of corn versus a single year of corn (see col-
umn 5 of table 2). Planting corn after corn
is thus less costly for farmers with planning
horizons of three years or more. Similar long-
term effects on soybean yields resulting from
corn monoculture emerge when we consider
three-year crop histories (see column 6 of
table 2), and the simulation results look sim-
ilar to those for the two-year history (see
online appendix).

Like the model with a single year of plant-
ing history, differences in present values
across planning horizons are small. Farmers
who always rotate rather than plant optimally
sacrifice about $2 per acre annually with-
out a corn premium and just $3.23 with the
corn price premium. This difference seems
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Table 8. Simulation Results for Fixed Fertilizer Price and Two-Year Crop History

PV Percentage Mean Profit Fertilizer

Objective Annuity Corn Corn-Corn Corn Soybean Mean Std

($/acre) (%) ($/acre) (lbs/acre)

Risk neutral, no premium on corn
One-Year 466.05 58.57 17.74 450.53 406.71 148.33 37.44
Two-Year 463.68 47.68 0.63 470.88 393.56 131.17 21.27
Infinite 466.50 55.45 11.64 460.17 398.43 142.71 36.15
Always Rotate 464.15 50.00 0.00 464.30 398.49 128.93 20.38

Risk neutral, $20 premium on corn
One-Year 477.42 60.02 20.62 469.64 404.47 154.03 37.21
Two-Year 473.47 47.70 0.63 491.68 393.46 134.53 19.59
Infinite 478.20 58.24 17.21 470.78 407.23 151.00 35.66
Always Rotate 474.28 50.00 0.00 485.02 398.49 132.43 18.58

Risk averse, no premium on corn
One-Year 466.33 54.55 9.69 462.45 396.66 139.03 35.20
Two-Year 463.81 47.84 0.94 470.80 393.71 129.88 22.23
Infinite 466.48 53.63 7.99 463.23 397.19 137.23 33.61
Always Rotate 464.15 50.00 0.00 464.29 398.49 127.22 20.61

Risk averse, $20 premium on corn
One-Year 477.73 59.12 18.82 470.01 406.14 151.02 36.64
Two-Year 474.13 48.85 0.95 488.89 395.53 133.07 20.46
Infinite 478.19 58.36 17.31 470.55 407.44 149.65 35.98
Always Rotate 474.28 50.00 0.00 485.01 398.49 130.90 18.75

Note: The table summarizes results from 1,000 replicates of 100-year simulations, wherein a one-acre field is managed using each of four different
management strategies: (1) Maximization of current profits conditional on the state variables. (2) Maximization of the current plus discounted
subsequent year’s profits. (3) Maximization of the expected net present value using the solution to the full, infinite-horizon SDP with discount
factor β = 0.95. (4) Maximization of current profits subject to always rotating. All values are means taken across the 1,000 series. PV Annuity
gives the annual perpetual annuity which, if discounted, results in the same expected present value as the objective. Risk-neutral farmers maximize
the expected present value of profits and risk-averse farmers maximize the expected present value of log profits. The $20 premium accords with
evidence on the price premium that corn receives near ethanol plants. All simulations assume the same stochastic evolution of state variables (the
first-order autoregressive model reported in table 5 and use the same sequence of pseudo random draws in order to minimize differences stemming
from chance error.

small given the considerable difference in
plantings and fertilizer applications. Two-
year horizon farmers plant even less corn
and have higher present values than farmers
who always rotate. There could be impor-
tant policy implications from this result. If
farmers actually behave in accordance with
the one-year or infinite-horizon model, they
might be enticed into planting much less corn
and less fertilizer per acre for as little as $2
to $3 per acre. Given well-known environ-
mental consequences of nutrient applications
on water quality, it would appear that con-
siderable reduction in nitrogen applications
might be achieved with relatively small incen-
tive payments that encourage rotation and
discourage monoculture. Such incentive pay-
ments might take the form of a fertilizer tax,
for example.

The main observation from comparing
risk-averse and risk neutral farmers is that
differences are extremely small. It therefore

seems unlikely that farmers’ risk preferences
might be discerned from observed plant-
ing decisions. Although we only consider
log profit, the amount of implied risk aver-
sion is actually quite substantial, because
this measure considers only a single acre
and precludes availability of insurance or
credit to smooth consumption in the face
of volatile profits. Nevertheless, we find
risk-averse farmers rotate more and apply
slightly less nitrogen fertilizer. Somewhat
surprisingly, risk-averse farmers with a short
time horizon have a higher present value
of returns than risk-neutral farmers maxi-
mizing current profits. Thus, risk aversion
partially compensates for lack of foresight.
This result occurs because rotation slightly
reduces profit variability relative to monocul-
ture, and this decision also happens to have
greater future returns. Comparison between
risk-averse and risk-neutral objectives sug-
gest that crop insurance likely increases

 at V
irginia T

ech on N
ovem

ber 18, 2015
http://ajae.oxfordjournals.org/

D
ow

nloaded from
 

http://ajae.oxfordjournals.org/


Livingston, Roberts, and Zhang Crop Rotations under Uncertainty 873

Table 9. Simulation Results for Stochastic Fertilizer Price and Two-Year Crop History

PV Percentage Mean Profit Fertilizer

Objective Annuity Corn Corn-Corn Corn Soybean Mean Std

($/acre) (%) ($/acre) (lbs/acre)

Risk neutral, no premium on corn
One-Year 455.47 57.51 15.35 435.64 406.43 147.82 34.83
Two-Year 454.29 48.71 2.39 455.58 389.35 134.44 22.94
Infinite 455.72 55.69 11.98 441.24 401.17 144.54 32.98
Always Rotate 453.70 50.00 0.00 453.16 391.19 130.01 16.85

Risk neutral, $20 premium on corn
One-Year 466.21 63.20 26.46 442.29 419.83 160.06 36.51
Two-Year 463.18 48.88 1.22 474.05 391.56 135.76 18.98
Infinite 467.02 57.09 14.58 458.31 403.42 150.13 33.84
Always Rotate 463.79 50.00 0.00 473.91 391.19 133.26 16.14

Risk averse, no premium on corn
One-Year 455.56 56.17 12.74 439.21 402.97 143.71 34.27
Two-Year 454.38 48.96 2.56 454.93 389.96 132.92 23.57
Infinite 455.73 55.59 11.81 441.40 401.12 142.80 33.34
Always Rotate 453.69 50.00 0.00 453.15 391.19 128.31 17.21

Risk averse, $20 premium on corn
One-Year 466.44 62.23 24.56 444.60 417.16 157.28 36.86
Two-Year 464.94 49.84 2.91 472.56 392.48 136.39 23.01
Infinite 466.99 57.08 14.54 458.16 403.62 148.71 34.23
Always Rotate 463.79 50.00 0.00 473.90 391.19 131.73 16.47

Note: The table summarizes results from 1,000 replicates of 100-year simulations, wherein a one-acre field is managed using each of four different
management strategies: (1) Maximization of current profits conditional on the state variables. (2) Maximization of the current plus discounted
subsequent year’s profits. (3) Maximization of the expected net present value using the solution to the full, infinite-horizon SDP with discount
factor β = 0.95. (4) Maximization of current profits subject to always rotating. All values are means taken across the 1,000 series. PV Annuity
gives the annual perpetual annuity which, if discounted, results in the same expected present value as the objective. Risk-neutral farmers maximize
the expected present value of profits and risk-averse farmers maximize the expected present value of log profits. The $20 premium accords with
evidence on the price premium that corn receives near ethanol plants. All simulations assume the same stochastic evolution of state variables (the
first-order autoregressive model reported in table 5 and use the same sequence of pseudo random draws in order to minimize differences stemming
from chance error.

fertilizer applications, but implications would
be clearer with a more careful study that con-
sidered the asymmetric nature of indemnities
and evolution of premiums in response to
yield surprises.

Implied Long-Run Supply Response

By comparing average plantings and yields
with and without the $20 per acre premium
for corn, we can obtain long-run price supply
elasticities for corn and cross-price elasticities
for soybeans. These calculations are summa-
rized in table 10. Note that these elasticities
only account for crop substitution between
corn and soybeans and yield effects, not other
kinds of land use conversion. For most mod-
els with one year of crop history, the implied
long-run elasticities are small, in the range
of 0.11–0.14, and even smaller (and mostly
negative) for soybeans. Since crop choices
hardly change, the main response to price is

greater fertilizer applications, which shows
up in higher average corn yields and near
zero response for soybeans. The exceptions
are for naive one-year objectives, which have
elasticities greater than 2 for corn and larger
(but negative) elasticities for soybeans. Sub-
stitution toward more corn monoculture
increases corn output, but lowers corn yield,
thereby causing a smaller increase for corn
than reduction in soybeans.

For two- and three-year crop histories,
the results are more varied. These varied
responses connect to the discussion above
about the benefits of corn monoculture on
subsequent soybean yields. Since one-year
maximizers and always-rotate outcomes are,
almost by definition, similar to the one-year
history case, the interesting results are those
for two-year and infinite-horizon objectives.
These objectives give somewhat different
planting rules than the one-year history case
and also have different supply elasticities,
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Table 10. Long-Run Supply Elasticities to Corn Price Change

One-Year Crop History Two-Year Crop History Three-Year Crop History

Fertilizer Price: Fixed Stochastic Fixed Stochastic Fixed Stochastic

Crop: Corn Soybean Corn Soybean Corn Soybean Corn Soybean Corn Soybean Corn Soybean

(%� Production/%� Corn Price)

Objective Risk Neutral
One-Year 1.96 −2.24 2.55 −2.34 2.46 −2.26 1.76 −1.34 2.54 −2.57 2.00 −1.69
Two-Year 0.11 −0.0002 0.13 −0.04 0.31 −0.20 0.61 −0.52 0.15 −0.03 0.17 −0.06
Infinite 0.13 −0.03 0.12 −0.02 1.42 −1.10 0.98 −0.78 0.94 −0.89 0.47 −0.43
Always Rotate 0.11 0 0.11 0 0.11 0 0.11 0 0.12 0 0.11 0

Risk Averse
One-Year 2.30 −2.67 1.47 −1.59 2.43 −2.19 1.96 −1.53 2.31 −2.29 2.60 −2.29
Two-Year 0.12 0.0005 0.14 −0.03 0.39 −0.27 0.72 −0.60 0.19 −0.05 0.19 −0.08
Infinite 0.14 −0.03 0.13 −0.02 1.43 −1.10 1.04 −0.83 1.22 −1.20 0.48 −0.42
Always Rotate 0.12 0 0.11 0 0.12 0 0.11 0 0.13 0 0.12 0

Note: Long-run supply elasticities are calculated by comparing average plantings and yield with and without a $20 per acre premium for corn.
Define Px as average percent corn plantings, YC

x and YS
x as average yield for corn and soybeans respectively, where x = 1 is with price premium

and x = 0 is without. Each corn (own-price) elasticity is calculated as (log(P1) + log(YC
1 ) − log(P0) − log(YC

0 ))/� log(average price). Each soybean

(cross-price) elasticity is calculated as (log(1 − P1) + log(YS
1 ) − log(1 − P0) − log(YS

0 ))/� log(average price). � log(average price) is calculated as
log(R0 + 20) − log(R0), where R0 is the average corn revenue per acre without the price premium.

ranging from 0.3 to 1.5 for corn and −0.03 to
−1.2 for soybeans. The larger magnitude elas-
ticities are for the infinite-horizon model with
fixed fertilizer prices with smaller elasticities
for the two-year objective. With a two-year
history and stochastic fertilizer prices, the
elasticities are near the middle of these
ranges for both two-year and infinite-horizon
objectives. With a three-year history, the
two-year objective again gives very inelastic
responses regardless of whether fertilizer
prices are fixed or stochastic, but for infinite-
horizon objectives, responses are much more
elastic when fertilizer prices are fixed rather
than stochastic.

Comparison of Models to Observed Rotations

To test how different models predict actual
planting decisions of individual farmers, we
matched predictions conditional on historical
state variables to actual rotations observed
in the NRI data. For the models with fixed
fertilizer price and one-year of crop his-
tory, all but one of the observations are
in the rotation region of the state-space
that lies between the two sets of threshold
curves. The one exception (1975) is a year
not observed in the NRI data, so all models
predict the same planting behavior and have
the same prediction accuracy (figure 4). Pre-
diction accuracy is no better, and sometimes
worse, in the model with stochastic fertilizer

price (figure 5). It is mainly worse for naive,
current-year maximizing farmers. Note that
for this field-level model, always rotate turns
out to have the best possible prediction accu-
racy, since this is the most frequent land use
choice in every year, and we assume the same
field-experiment-based productivity for all
parcels. Prediction accuracy for two-year
and three-year histories are similar to the
one-year model.

While these results provide some illus-
tration of the importance of rotation, there
simply is not enough data to differentiate
between models. To differentiate between
models requires considerably longer time
series to span the full distribution of prices
and revenues. Other idiosyncratic factors, like
early season moisture and ability to plant,
presumably influence rotation decisions and
might explain residual shortfall in predictive
accuracy.

Discussion and Conclusions

This article develops a new dynamic model
of crop planting decisions built around the
agronomic benefits of crop rotations and
price uncertainty. Where the effects of price
uncertainty on planting decisions has long
been a focus in agricultural economics, that
traditional focus has been built primarily
around a static model with risk aversion,
wherein planting allocation decisions are
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Figure 4. Prediction accuracy of fixed nitrogen fertilizer price models compared to NRI data

Notes: This graph summarized the prediction accuracy of different revenue maximization models given one year rotation history with no premium
on corn price and fixed nitrogen fertilizer price. The prediction accuracy is almost the same for every model.
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Figure 5. Prediction accuracy of stochastic nitrogen fertilizer price models compared to
NRI data

Notes: This graph summarized the prediction accuracy of different revenue maximization models given one year rotation history with no premium
on corn price and stochastic fertilizer price. The prediction results are the same for two year horizon models and always rotating models.

treated as a portfolio problem (Sandmo
1971; Feder 1980; Just and Zilberman 1983;
Chavas and Holt 1990; Pope and Just 1991).
In a static model with risk aversion, a farmer
plants a mix of corn and soybeans to reduce
profit risk, not because they are complements

in a dynamic production process. In this
traditional approach, the effect of uncer-
tainty is driven by curvature of a utility
function and a motive to diversify, not by
production complementarities and option
values associated with longer-run price
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uncertainty. While both the static portfo-
lio approach and stochastic-dynamic views
are likely important, there has been relatively
little attention paid to the latter, and this
article develops a first attempt to address that
gap.

It may be interesting to note a fundamental
difference between the portfolio/allocation
and the option-value/rotation approach taken
here: where effects of risk aversion in agricul-
ture follow mainly from imperfect insurance
markets, real option values exist even in
perfect markets. A nearly obvious corollary
of this observation is that an absence of
monoculture does not constitute prima facie
evidence of market failure. Indeed, within the
context of rotational decisions, risk aversion
appears to be of relatively minor impor-
tance for planting decisions and fertilizer
applications.

Calibration of our model using data from
experimental field trials, as well as historical
price and yield data from Iowa, indicates
a powerful incentive to rotate. Even in
locations near ethanol plants, which are
assumed to receive a $20 per acre premium
for producing corn, the model shows farmers
rotating nearly as often as farmers without
such a premium. Indeed, always rotating
with or without the premium is impercepti-
bly different from the optimal decision rule,
at least when a single year of crop history
is considered. This finding suggests highly
inelastic supply response to both temporary
(stochastically evolving) and permanent price
shocks.

When we consider longer crop histories
in the decision rules, the results are more
varied and somewhat surprising. Although
rotation remains the dominant outcome, the
solution to the infinite horizon model looks
closer to the naive (single-year maximizing)
farmer than the always-rotating or two-year
maximizing farmer. This result follows from
an additional gain to soybean yields after
two and/or three years of continuous corn.
This additional gain does not show up when a
single year of planting history is considered.
As a result, farmers with a long planning
horizon, like naive farmers, are more likely
to deviate from corn-soybean rotation when
corn prices are relatively high.

An interesting and potentially important
observation for policy considerations is that
the market does not harshly punish sub-
optimal actors. Shortsighted farmers, who
maximize only current-year or two-year

profits, as well as those who always rotate,
do nearly as well over the long run as fully
forward-looking stochastic dynamic optimiz-
ers. At the same time, the different objectives
and modeling assumptions can sometimes
give markedly different decision rules in
response to temporary and permanent price
movements. Given remaining uncertainties
about the agronomic benefits of rotations and
the likelihood that farmers hold heteroge-
neous expectations about the future, a fairly
wide range of supply responses might be
rationalized by these results.

A potentially more interesting implica-
tion is that farmers who, for one reason or
another, choose to plant corn after corn at
any significant frequency, might be persuaded
to always rotate with a fairly small incentive
payment of $4 per acre or less. Such incentive
payments could be desirable given water
pollution and vast dead zones (e.g, Gulf of
Mexico and Chesapeake Bay) have been
linked to fertilizer from agriculture (Malakoff
1998; Donner and Kucharik 2008), which is
predominantly corn. Always rotating would
reduce corn plantings, fertilizer applications
connected with corn plantings, and simultane-
ously reduce application rates on remaining
corn acreage. In a similar vein, it might be
interesting to consider the influence of a
fertilizer tax on both planting decisions and
application rates.

Our approach to modeling crop choice
could otherwise be extended to consider
subsidized crop insurance. At present, crop
insurance premiums depend on a ten-year
yield history but are not adjusted for past
plantings, so that premiums are set too low
if a farmer who typically rotates decides
to plant corn after corn or soybeans after
soybeans. Premiums would subsequently
be too high if the farmer were to return to
rotation. Such mispricing might discourage
rotation in favor of monoculture, a poten-
tially avoidable form of dynamic moral
hazard (Vercammen and van Kooten 1994).
By discouraging rotations, insurance might
also encourage greater chemical use and lead
to worse environmental outcomes. Horowitz
and Lichtenberg (1993) found insurance
increased chemical use if inputs were “risk-
increasing.” While we do find some limited
evidence of this phenomenon in our model,
perhaps a more natural explanation is sub-
stitutability of inputs (fertilizer and/or
pesticides) with rotations that insurance
might discourage.
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There may also be implications for intro-
duction of genetically modified seed with pest
resistance, like Bt corn. Given adoption of
genetically modified crops has grown simul-
taneously with corn ethanol production, and
corn expansion has come at least partly at
the expense of reduced soybean plantings,
future research might investigate the degree
to which these new seed varieties substitute
for rotation benefits.

Future work might also consider a
multiple-field setting. Because diversification
would presumably be maximized or nearly
so with an even split of corn and soybean
plantings, and the present value of profits
from always rotating is nearly optimal, the
always-rotating rule of thumb would seem
to nearly maximize both average profits and
diversification, so long as the initial condition
of the land was half corn and half soybeans.
However, given corn and soybean returns are
highly correlated, the risk-return tradeoffs
may be subtle and likely small. Neverthe-
less, it may be interesting for future work
to explicitly consider the portfolio problem
simultaneously with rotations. Given the
computational burden and limited stakes
suggested by this article, we leave this inquiry
for future research.

Supplementary Material

Supplementary online appendix is available
at http://oxfordjournals.org/our_journals/ajae/
online.
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