SDP Modeling Update

Year 2 CNH Workshop

5/31/17-6/2/17

Madison, WI

Model structure

- Nonlinear constrained optimization problem
- Agents choose: 1) allocation of land among crops, and 2) fertilizer applications to maximize profit subject to resource constraints
- Simple annual problem:

$$\max_{l_c,N_c} \sum_{c} \{ p_c \cdot yield_c(l_c,N_c) - (r_N \cdot N_c + r_l \cdot l_c + vc_c - fc_c) \}$$

s.t.
$$\sum_{c} l_c \leq L, \sum_{c} N_c \leq N$$
$$l_c^c \geq 0, N_c \geq 0 \forall c$$

Model structure

Regional-scale (aggregate) model	Field-scale (individual) model
 Single optimization problem 	 Separate optimization problem for each field
 <i>l_c</i>: proportion land in each crop rotation 	• l_c : indicator for crop grown
 Static (crop yield depends on rotation) 	 Dynamic (crop yield in year t depends on crop grown in year t-1)
 Calibration with Positive Mathematical Programming (PMP) 	 Calibration relies on yield differences across fields (e.g., from heterogeneity in land quality)

Approach

- Regional (aggregate) model
- Data
 - Cycles simulation output: yield, NO₃ leaching, N₂O emissions by crop, rotation, year (weather), and total N applied for 1980-2015
 - Mitscherlich-Baule yield functions estimated using nonlinear least squares
 - Log-linear leaching and emissions functions estimated using ordinary least squares
 - Regional average/recommended fertilizer applications by crop and rotation
 - Crop rotations based on USDA Cropland Data Layers (Kemanian, Rozum, and White)
 - Costs of production from UW Extension budgets by crop and rotation
 - Crop prices from USDA NASS annual surveys by crop

Estimated functions

Estimated functions

Approach

- PMP calibration
 - Addresses tendency toward corner solutions
 - Captures unobserved factors that affect decision-making
 - Replicates observed land allocation by crop rotation based on USDA Cropland Data Layers (Kemanian, Rozum, and White)
 - 67.4% continuous corn
 - 8.4% corn-soy
 - 24.2% corn-corn-alfalfa-alfalfa-alfalfa
 - Calibrating on land results in recommended fertilizer applications

Results, baseline model

Land allocation		Fertilizer applica	Fertilizer applications		Yield	
Continuous corn	0.674	Corn after corn	125.16	Corn after corn	138.49	
Corn-soy	0.084	Corn after soy	41.43	Corn after soy	134.74	
Corn-alfalfa	0.242	Corn after alfalfa (avg)	20.34	Soy after corn	48.38	
				Alfalfa after corn	3.97	
				Alfalfa year 2	4.54	
				Alfalfa year 3	4.39	
				Corn after alfalfa (avg)	126.73	

Results, baseline model

Baseline model	30% N reduction, no adjustment in land allocation
Production	Production
Corn 114.34 bu/ac	Corn 101.65 bu/ac
Soy 2.03 bu/ac	Soy 2.03 bu/ac
Alfalfa 0.52 t/ac	Alfalfa 0.52 t/ac
N applications 88.56 lbs/ac	N applications 41.76 lbs/ac (on continuous corn only)
Profit \$111.86/ac	Profit \$72.32/ac
Leaching 2.45 lbs/ac	Leaching 1.83 lbs/ac
Emissions 1.19 lbs/ac	Emissions 0.40 lbs/ac